47 research outputs found

    MentalMedia: repositorio audiovisual de psicopatología descriptiva

    Get PDF
    La psicopatología descriptiva que se estudia en la Asignatura Enfermería de Salud Mental de tercero de Grado en Enfermería, desarrolla los signos y síntomas más frecuentes en psiquiatría y es la base para comprender un trastorno mental, pues éstos confieren la entidad patológica. La explicación de dichos cuadros clínicos reviste cierta dificultad para su comprensión, dado que a veces hay que explicar experiencias o realidades difíciles de entender para un alumno que las estudia por primera vez. Para el docente, además aparece cierta dificultad añadida a la hora de explicar algunos cuadros clínicos con ejemplos sin apoyo audiovisual. Lo que proponemos con este PID es la producción de material audiovisual inédito que simule las alteraciones psicopatológicas de las distintas áreas mentales como el lenguaje, el pensamiento, la memoria o la psicomotricidad, entre otros, que permita ser usado como herramienta de apoyo a la docencia teórica y práctica y que permita al alumno una mejor comprensión de la materia. Además, proponemos la realización de escenarios de pacientes simulados mediante rol-playing para que el alumno pueda aplicar lo aprendido con el recurso audiovisual creado. Para ello nos proponemos como objetivos generales: Desarrollar contenidos audiovisuales que complementen las actividades de enseñanza-aprendizaje tradicionales e incorporar el paciente simulado mediante rol-playing y Evaluar la eficacia de los contenidos audiovisuales y el uso del rol-playing como estrategia de aprendizaje. Lo resultados obtenidos muestran que el empleo de las entrevistas simuladas y controladas por el profesorado, ayudan y motivan al estudiantado. De igual modo, la realización de simulación clínica mediante el uso de paciente estandarizado en salud mental mejora el aprendizaje, motiva al alumnado a realizar las entrevistas siendo una práctica valorada muy positivamente por parte de estos, por lo que es una experiencia con gran potencial de aprendizaje para el alumno. La utilidad y aplicabilidad del manejo de documentos multimedia que estén relacionados con las prácticas de las asignaturas en ciencias de la salud a realizar durante el periodo docente, ayudan a mejorar el desarrollo de competencias en escenarios de simulación con pacientes estandarizados. Si bien este proyecto ha permitido subvencionar el coste que ha supuesto la contratación de actuantes que han participado como pacientes simulados, para la incorporación de la docencia de manera habitual se requeriría de un presupuesto anual que permitiese la continuidad de los escenarios de simulación clínica con paciente estandarizado. Sin embargo, sí podrá incorporarse a la práctica docente habitual el uso de los videos en los que se desarrollan las entrevistas realizadas por el profesor y el actuante simulando a un paciente con depresión, trastorno delirante crónico y trastorno obsesivo compulsivo, de manera que podrán usarse tanto para la parte teórica como para las prácticas de la asignatura

    Impact of bisphosphonates on the proliferation and gene expression of human fibroblasts

    Get PDF
    The aim of this study was to elucidate the role of fibroblasts in bisphosphonate-related osteonecrosis of the jaw (BRONJ), evaluating the effect of zoledronate, alendronate, and ibandronate on the proliferation of fibroblasts and on their expression of genes essential for fibroblast physiology. Human CCD-1064Sk epithelial fibroblast cells were incubated in culture medium with 10-5, 10-7, or 10-9 M zoledronate, alendronate, or ibandronate. The proliferative capacity of fibroblasts was determined by spectrophotometry (MTT) at 24 of culture. Real-time polymerase chain reaction (RT-PCR) was used to study the effects of BPs at a dose of 10-9 M on the expression of FGF, CTGF, TGF-β1, TGFβR1, TGFβR2, TGFβR3, DDR2, α-actin, fibronectin, decorin, and elastin. Fibroblasts proliferation was significantly increased at the lowest dose (10-9M) of each BP but was not affected at the higher doses (10-5 and 10-7M). The proliferation increase may be related to the rise in TGF-β1 and TGFβR1 expression detected after the treatment of cells with 10-9M of zoledronate, alendronate, or ibandronate. However, the expression of CTGF, DDR2, α-actin, fibronectin, and decorin decreased versus controls. The results of this in vitro study indicate that a very low BP dose (10-9 M) can significantly affect the physiology of fibroblasts, increasing their proliferative capacity and modulating the expression of multiple genes involved in their growth and differentiation

    Potential Effects of Phenolic Compounds That Can Be Found in Olive Oil on Wound Healing

    Get PDF
    This study was supported by research group BIO277 (Junta de Andalucia) and the Department of Nursing of the University of Granada. We would also like to thank Concepcion Ruiz for the considerations and retouches made to this paper.The treatment of tissue damage produced by physical, chemical, or mechanical agents involves considerable direct and indirect costs to health care systems. Wound healing involves a series of molecular and cellular events aimed at repairing the defect in tissue integrity. These events can be favored by various natural agents, including the polyphenols in extra virgin olive oil (EVOO). The objective of this study was to review data on the potential effects of different phenolic compounds that can also be found in EVOO on wound healing and closure. Results of in vitro and animal studies demonstrate that polyphenols from different plant species, also present in EVOO, participate in different aspects of wound healing, accelerating this process through their anti-inflammatory, antioxidant, and antimicrobial properties and their stimulation of angiogenic activities required for granulation tissue formation and wound re-epithelialization. These results indicate the potential usefulness of EVOO phenolic compounds for wound treatment, either alone or in combination with other therapies. Human studies are warranted to verify this proposition.Junta de Andalucia BIO277Department of Nursing of the University of Granad

    Effects of Therapeutic Doses of Celecoxib on Several Physiological Parameters of Cultured Human Osteoblasts

    Get PDF
    Non-steroidal anti-inflammatory drugs (NSAIDs), including cyclooxygenase-2 (COX-2)-selective NSAIDs, are associated with adverse effects on bone tissue. These drugs are frequently the treatment of choice but are the least studied with respect to their repercussion on bone. The objective of this study was to determine the effects of celecoxib on cultured human osteoblasts. Human osteoblasts obtained by primary culture from bone samples were treated with celecoxib at doses of 0.75, 2, or 5μM for 24 h. The MTT technique was used to determine the effect on proliferation; flow cytometry to establish the effect on cell cycle, cell viability, and antigenic profile; and real-time polymerase chain reaction to measure the effect on gene expressions of the differentiation markers RUNX2, alkaline phosphatase (ALP), osteocalcin (OSC), and osterix (OSX). Therapeutic doses of celecoxib had no effect on osteoblast cell growth or antigen expression but had a negative impact on the gene expression of RUNX2 and OSC, although there was no significant change in the expression of ALP and OSX. Celecoxib at therapeutic doses has no apparent adverse effects on cultured human osteoblasts and only inhibits the expression of some differentiation markers. These characteristics may place this drug in a preferential position among NSAIDs used for analgesic and anti-inflammatory therapy during bone tissue repair.This study was supported by research group BIO277 (Junta de Andalucía) and Department of Nursing (University of Granada). The work outlined in this article has been supported by the Spanish Ministry of Education under FPU fellowship reference FPU15-05635 and FPU16-04141

    Therapeutic doses of nonsteroidal anti-inflammatory drugs inhibit osteosarcoma MG-63 osteoblast-like celss maturation, viability, and biomineralization potential

    Get PDF
    Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used to reduce pain and inflammation. However, their effect on bone metabolisms is not well known, and results in the literature are contradictory. The present study focusses on the effect of dexketoprofen, ketorolac, metamizole, and acetylsalicylic acid, at therapeutic doses, on different biochemical and phenotypic pathways in human osteoblast-like cells. Osteoblasts (MG-63 cell line) were incubated in culture medium with 1–10  M of dexketoprofen, ketorolac, metamizole, and acetylsalicylic acid. Flow cytometry was used to study antigenic profile and phagocytic activity. The osteoblastic differentiation was evaluated by mineralization and synthesis of collagen fibers by microscopy and alkaline phosphatase activity (ALP) by spectrophotometric assay. Short-term treatment with therapeutic doses of NSAIDs modulated differentiation, antigenic profile, and phagocyte activity of osteoblast-like cells. The treatment reduced ALP synthesis and matrix mineralization. However, nonsignificant differences were observed on collagen syntheses after treatments. The percentage of CD54 expression was increased with all treatments. CD80, CD86, and HLA-DR showed a decreased expression, which depended on NSAID and the dose applied. The treatments also decreased phagocyte activity in this cellular population. The results of this paper provide evidences that NSAIDs inhibit the osteoblast differentiation process thus reducing their ability to produce new bone mineralized extracellular matrix.This study was supported by the BIO277 research group (Junta de Andalucía), by the Department of Nursing, Faculty of Health Sciences, University of Granada and by the research group Brighton Studies in Tissue-mimicry and Aided Regeneration (BrightSTAR), School of Pharmacy & Biomolecular Sciences, University of Brighton

    Human Fibroblast Gene Expression Modulation Using 940 NM Diode Laser

    Get PDF
    Low-Level Laser Therapy is used as regenerative therapy in different clinical fields. This is due to its photobiomodulation effect via cell signaling on different cell populations, Including fibroblasts, cells involved in tissue regeneration and healing. The aim was to analyze the effect of 940 nm diode laser on the gene expression of different markers involved in fibroblast growth, differentiation, and migration. Real-time polymerase chain reaction (q-RT-PCR) was used to quantify the expression of fibroblast growth factor (FGF), connective tissue growth factor (CTGF), vascular-endothelial growth factor (VEGF), transforming growth factor β1 (TGF-β1), TGFβ-receptors (TGFβR1, TGFβR2, and TGFβR3), discoidin-domain receptor-2 (DDR2), matrix metalloproteinase-2 (MMP2), α-actin, fibronectin, decorin, and elastin on human fibroblast, treated with single dose (T1) or two doses (T2) of diode laser at 0.5 Watts and 4 J/cm2. A significant increase in the expression of FGF, TGF-β1, TGFβR1, TGFβR2, α-actin, fibronectin, decorin, DDR2 and MMP2 was observed after both treatments. A decrease was observed in expression of elastin (T1 and T2), and CTGF (T2). These changes underlie the biostimulatory effect of laser on fibroblasts, which translates into an increase in short-term proliferation and in long-term differentiation to myofibroblasts. These data support the therapeutic potential of diode laser for wound repair

    Bone Protective Effect of Extra-Virgin Olive Oil Phenolic Compounds by Modulating Osteoblast Gene Expression

    Get PDF
    The phenolic compounds of extra-virgin olive oil can act at various levels to protect individuals against cardiovascular and neurodegenerative diseases, cancer, and osteoporosis, among others. Polyphenols in extra-virgin olive oil can stimulate the proliferation of osteoblasts, modify their antigen profile, and promote alkaline phosphatase synthesis. The objective of this work was to determine the effect of different extra-virgin olive oil phenolic compounds on the gene expression of osteoblast-related markers. The cells of the MG63 osteoblast line were cultured for 24 h with 10-6 M of the phenolic compounds ferulic acid, caffeic acid, coumaric acid, apigenin, or luteolin. The expression of studied markers was quantified using quantitative real-time polymerase chain reaction (q-RT-PCR). The expression by MG63 osteoblasts of growth and differentiation/maturation markers was modified after 24 h of treatment with 10-6 M of the phenolic compounds under study, most of which increased the gene expression of the transforming growth factor 1 (TGF- 1), TGF- receptor 1,2 and 3 (TGF- R1, TGF- R2, TGF- R3), bone morphogenetic protein 2 and 7 (BMP2, BMP7), run-related transcription factor 2 (RUNX-2), Alkaline phosphatase (ALP), Osteocalcin (OSC), Osterix (OSX), Collagen type I (Col-I) and osteoprotegerin (OPN). The extra-virgin olive oil phenolic compounds may have a beneficial effect on bone by modulating osteoblast physiology, which would support their protective effect against bone pathologies.The work outlined in this article has been partially funded by the Spanish Ministry of Education under FPU fellowship reference FPU15-0563

    Effects of bisphenol F, bisphenol S, and bisphenol AF on cultured human osteoblasts

    Get PDF
    Bisphenol A (BPA) analogs, like BPA, could have adverse effects on human health including bone health. The aim was to determine the effect of BPF, BPS and BPAF on the growth and differentiation of cultured human osteoblasts. Osteoblasts primary culture from bone chips harvested during routine dental work and treated with BPF, BPS, or BPAF for 24 h at doses of 10 –5 , 10 –6 , and 10 –7 M. Next, cell proliferation was studied, apoptosis induction, and alkaline phosphatase (ALP) activity. In addition, mineralization was evaluated at 7, 14, and 21 days of cell culture in an osteogenic medium supplemented with BP analog at the studied doses. BPS treatment inhibited proliferation in a dose-dependent manner at all three doses by inducing apoptosis; BPF exerted a significant inhibitory effect on cell proliferation at the highest dose alone by an increase of apopto- sis; while BPAF had no effect on proliferation or cell viability. Cell differentiation was adversely affected by treatment with BPA analogs in a dose-dependent, observing a reduction in calcium nodule formation at 21 days. According to the results obtained, these BPA analogs could potentially pose a threat to bone health, depending on their concentration in the organism.Funding for open access publishing: Universidad de Granada/ CBU

    Repercussions of Bisphenol A on the Physiology of Human Osteoblasts

    Get PDF
    (1) Background: Bisphenol A (BPA) is an endocrine disruptor that is widely present in the environment and exerts adverse effects on various body tissues. The objective of this study was to determine its repercussions on bone tissue by examining its impact on selected functional parameters of human osteoblasts. (2) Methods: Three human osteoblast lines were treated with BPA at doses of 10(-5), 10(-6), or 10(-7) M. At 24 h post-treatment, a dose-dependent inhibition of cell growth, alkaline phosphatase activity, and mineralization was observed. (4) Results: The expression of CD54 and CD80 antigens was increased at doses of 10(-5) and 10(-6) M, while the phagocytic capacity and the expression of osteogenic genes (ALP, COL-1, OSC, RUNX2, OSX, BMP-2, and BMP-7) were significantly and dose-dependently reduced in the presence of BPA. (5) Conclusions: According to these findings, BPA exerts adverse effects on osteoblasts by altering their differentiation/maturation and their proliferative and functional capacity, potentially affecting bone health. Given the widespread exposure to this contaminant, further human studies are warranted to determine the long-term risk to bone health posed by BPA

    Antimicrobial properties of olive oil phenolic compounds and their regenerative capacity towards fibroblast cells

    Get PDF
    Some micronutrients of vegetable origin are considered potentially useful as wound-healing agents because they can increase fibroblast proliferation and differentiation. The aim of this study was to evaluate the regenerative effects of selected olive oil phenolic compounds on cultured human fibroblasts and explore their antimicrobial properties. Material and methods: The CCD-1064Sk fibroblast line was treated for 24 h with 10-6M luteolin, apigenin, ferulic, coumaric acid or caffeic acid, evaluating the effects on cell proliferation by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) spectrophotometric assay; the migratory capacity by the scratch assay and determining the expression of Fibroblast Growth Factor (FGF), Vascular Endothelial Growth Factor (VEGF), Transforming Growth Factor- β1 (TGFβ1), Platelet Derived Growth Factor (PDGF), and Collagen Type I (COL-I) genes by real-time polymerase chain reaction. The antimicrobial capacity of the polyphenols was evaluated by the disc diffusion method. Results: All compounds except for ferulic acid significantly stimulated the proliferative capacity of fibroblasts, increasing their migration and their expression of the aforementioned genes. With respect to their antimicrobial properties, treatment with the studied compounds inhibited the growth of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Proteus spp., and Candida Albicans. Conclusions: The phenolic compounds in olive oil have a biostimulatory effect on the regeneration capacity, differentiation, and migration of fibroblasts and exert major antibacterial activity. According to the present findings, these compounds may have a strong therapeutic effect on wound recovery.Grupo BIO-277Departamento de Enfermerí
    corecore