25 research outputs found

    Aromatic Plants and Their Associated Arbuscular Mycorrhizal Fungi Outcompete Tuber melanosporum in Compatibility Assays with Truffle-Oaks

    Get PDF
    The high value of black truffle recompenses the slow growth of the fungus when established in the field. Adding a secondary crop, such as medicinal and aromatic plants (MAPs), could further enhance the sustainability of truffle production agro-forest systems. The dual cultures of ectomycorrhizal truffle-oak seedlings and MAPs (lavender, thyme, and sage) previously inoculated and non-inoculated with native arbuscular mycorrhizal fungi (AMF), were established to evaluate plant–fungi relationships. After 12 months in a shadehouse, plants’ growth, mycorrhizal colonization, and extraradical soil mycelium (both of Tuber melanosporum and AMF) were measured. Overall, truffle-oaks’ growth was negatively affected by the presence of MAPs, especially when inoculated with AMF. In turn, the presence of truffle-oaks barely affected the co-cultured MAPs, and only lavenders showed a significant growth reduction. All AMF-inoculated MAPs showed higher shoot and root biomass than non-inoculated ones. Compared to truffle-oaks growing alone, the presence of co-cultured MAPs, especially when they were AMF-inoculated, significantly decreased both the ectomycorrhizas and soil mycelium of T. melanosporum. These results reveal the strong competition between AMF and T. melanosporum and warn about the need for the protection of intercropping plants and their associated symbiotic fungi to avoid reciprocal counterproductive effects in mixed truffle-oak–AMF–MAP plantations.info:eu-repo/semantics/publishedVersio

    Glyphosate treatments for weed control affect early stages of root colonization by Tuber melanosporum but not secondary colonization

    Get PDF
    The cultivation of the ectomycorrhizal fungus Tuber melanosporum has considerably spread in recent years throughout the world. During the first years of truffle cultivation, weed control is a key practice to improve the establishment of host trees and the proliferation of the fungus in the soil. Glyphosate is nowadays the most commonly used herbicide in Spanish truffle orchards. We explored the effect of glyphosate on the proliferation of T. melanosporum mycorrhizae, on extraradical mycelium and on the inoculum potential of T. melanosporum spores in greenhouse experiments using Quercus ilex seedlings as host plants. No detrimental effect on the secondary infection of T. melanosporum was found after three sequential glyphosate applications in young seedlings during one vegetative period. Instead, a change in the distribution of fine roots and T. melanosporum mycorrhizae along soil depth was observed. On the other hand, results indicate that high application rates of glyphosate hinder the infectivity of T. melanosporum spore inoculum, without apparent impact on the host performance. Our results suggest that glyphosate has the potential to jeopardise the role of the soil spore bank as inoculum source for the colonisation of new roots, also raising the question of whether glyphosate could hinder the presumed role of spores in sexual mating.info:eu-repo/semantics/acceptedVersio

    Lack of thinning effects over inter-annual changes in soil fungal community and diversity in a Mediterranean pine forest

    Get PDF
    Predicted changes in global climate might negatively affect the soil microbiome and associated ecosystem processes in Mediterranean forests. Forest treatments, such as forest thinning, have been suggested to mitigate climate change impacts on vegetation by reducing competition between trees, thus increasing water availability. Studies addressing the combined effects of climate and forest thinning on belowground fungal communities are still scarce, being fundamental to elaborate adaptive strategies to global warming. The aim of this study was to evaluate the tree density reduction effects on soil fungal communities and their response to inter-annual changes in weather conditions. The temporal dynamics of soil fungal communities in relation to these two drivers (i.e., forest management and weather conditions) were studied from 2009 until 2014 in a set of 12 pairs of thinned and un-thinned plots dominated by Pinus pinaster Ait. Thinning (from 30% up to 70% reduction in stand basal area) was conducted in 2009 and soil fungal community composition was studied during 4 years. Here, we used autumn precipitation and temperature to describe the impact of inter-annual weather changes. We used Pacific Biosciences sequencing of fungal ITS2 amplicons to study fungal communities in soil samples. Forest thinning did not significantly affect fungal community composition nor fungal species richness and diversity, indicating that the soil fungal community is resistant to forest thinning regardless of its intensity. However, fungal species composition changed progressively across years, both at the species level and with regards to functional guilds. These changes in community composition were partly driven by inter-annual variation in precipitation and temperature, with free-living fungi increasing in abundance under wetter conditions, and symbiotic fungi being more prominent under drier and colder conditions. The results indicate that mycorrhizal communities in Mediterranean forest ecosystems can resist forest thinning, if enough trees and functional roots from thinned trees are retained.info:eu-repo/semantics/acceptedVersio

    Grifola frondosa (Maitake) Extract Reduces Fat Accumulation and Improves Health Span in C. elegans through the DAF-16/FOXO and SKN-1/NRF2 Signalling Pathways

    Get PDF
    In recent years, food ingredients rich in bioactive compounds have emerged as candidates to prevent excess adiposity and other metabolic complications characteristic of obesity, such as low-grade inflammation and oxidative status. Among them, fungi have gained popularity for their high polysaccharide content and other bioactive components with beneficial activities. Here, we use the C. elegans model to investigate the potential activities of a Grifola frondosa extract (GE), together with the underlying mechanisms of action. Our study revealed that GE represents an important source of polysaccharides and phenolic compounds with in vitro antioxidant activity. Treatment with our GE extract, which was found to be nongenotoxic through a SOS/umu test, significantly reduced the fat content of C. elegans, decreased the production of intracellular ROS and aging–lipofuscin pigment, and increased the lifespan of nematodes. Gene expression and mutant analyses demonstrated that the in vivo anti-obesity and antioxidant activities of GE were mediated through the daf-2/daf-16 and skn-1/nrf-2 signalling pathways, respectively. Taken together, our results suggest that our GE extract could be considered a potential functional ingredient for the prevention of obesity-related disturbances.info:eu-repo/semantics/publishedVersio

    The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localisation in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in response to manganese stress

    Get PDF
    Acidification of forest ecosystems leads to increased plant availability of the micronutrient manganese (Mn), which is toxic when taken up in excess. To investigate whether ectomycorrhizas protect against excessive Mn by improving plant growth and nutrition or by retention of excess Mn in the hyphal mantle, seedlings of two populations of Douglas fir (Pseudotsuga menziesii), two varieties, one being menziesii (DFM) and the other being glauca (DFG), were inoculated with the ectomycorrhizal fungus Rhizopogon subareolatus in sand cultures. Five months after inoculation, half of the inoculated and non-inoculated seedlings were exposed to excess Mn in the nutrient solution for further 5 months. At the end of this period, plant productivity, nutrient concentrations, Mn uptake and subcellular compartmentalisation were evaluated. Non-inoculated, non-stressed DFM plants produced about 2.5 times more biomass than similarly treated DFG. Excess Mn in the nutrient solution led to high accumulation of Mn in needles and roots but only to marginal loss in biomass. Colonisation with R. subareolatus slightly suppressed DFM growth but strongly reduced that of DFG (−50%) despite positive effects of mycorrhizas on plant phosphorus nutrition. Growth reductions of inoculated Douglas fir seedlings were unexpected since the degree of mycorrhization was not high, i.e. ca. 30% in DFM and 8% in DFG. Accumulation of high Mn was not prevented in inoculated seedlings. The hyphal mantle of mycorrhizal root tips accumulated divalent cations such as Ca, but not Mn, thus not providing a barrier against excessive Mn uptake into the plants associated with R. subareolatus

    Tracking mycorrhizas and extraradical mycelium of the edible fungus Lactarius deliciosus under field competition with Rhizopogon spp

    No full text
    The objective of this study is to evaluate the field persistence of the edible ectomycorrhizal fungus Lactarius deliciosus in competition with two ubiquitous soil fungi. Couples of plants inoculated with either L. deliciosus, Rhizopogon roseolus, or R. luteolus were transplanted, 10 cm apart, in two different sites at the following combinations: L. deliciosus–R. roseolus, L. deliciosus–R. luteolus, L. deliciosus–control (non-inoculated), control–R. roseolus, control–R. luteolus, and control–control. Eight months after transplantation, root colonization and extraradical soil mycelium for each fungal species were quantified. For mycelium quantification, soil cores equidistant to the two plants in each couple were taken, and total deoxyribonucleic acid (DNA) was extracted. Real-time polymerase chain reaction analysis was performed using specific primers and TaqMan¼ Minor groove binding (MGB) probes designed in the ribosomal DNA internal transcribed spacer region of each fungal species. Field site significantly influenced persistence of both mycorrhizas and extraradical mycelium of L. deliciosus. Extraradical mycelium quantity was positively correlated with the final percentage of ectomycorrhizas for the three fungal species. Different competitive pressure between the two Rhizopogon species on L. deliciosus persistence was observed, with R. luteolus having no effect on L. deliciosus survival. Negative correlation between the final percentage of mycorrhizas of L. deliciosus and R. roseolus was observed. However, no relationship was determined between extraradical mycelia of both fungal species. The results obtained suggest that competition between L. deliciosus and R. roseolus takes place in the root system, for ectomycorrhiza formation in available roots, rather than in the extraradical phase

    Field persistence of the edible ectomycorrhizal fungus Lactarius deliciosus : effects of inoculation strain, initial colonization level, and site characteristics

    No full text
    Pinus pinea plants were inoculated with different strains of the edible ectomycorrhizal fungus Lactarius deliciosus. The inoculated plants were established in six experimental plantations in two sites located in the Mediterranean area to determine the effect of the initial colonization level and the inoculated strain on fungal persistence in the field. Ectomycorrhizal root colonization was determined at transplantation time and monitored at different times from uprooted plants. Extraradical soil mycelium biomass was determined from soil samples by TaqMan¼ real-time polymerase chain reaction (PCR). The results obtained indicate that the field site played a decisive role in the persistence of L. deliciosus after outplanting. The initial colonization level and the selection of the suitable strain were also significant factors but their effect on the persistence and spread of L. deliciosus was conditioned by the physical–chemical and biotic characteristics of the plantation soil and, possibly, by their influence in root growth. Molecular techniques based on real-time PCR allowed a precise quantification of extraradical mycelium of L. deliciosus in the field. The technique is promising for non-destructive assessment of fungal persistence since soil mycelium may be a good indicator of root colonization. However, the accuracy of the technique will ultimately depend on the development of appropriate soil sampling methods because of the high variability observed

    Molecular identification of the edible ectomycorrhizal fungus Lactarius deliciosus in the symbiotic and extraradical mycelium stages

    No full text
    Specific rDNAITS amplifications, microsatellite-primedPCRand ITS-SSCP analysis were applied to identify and characterize pre-selected isolates of the edible ectomycorrhizal fungus Lactarius deliciosus in different stages of the life cycle. Sampling was performed from pure cultures, mycorrhizas and soil from experimental plots established with nursery-inoculated pine seedlings. A newly-designed reverse primer (LDITS2R) combined with the universal forward ITS1 allowed to perform specific amplifications of L. deliciosus from all the samples. Microsatellite-primed PCR using the (GTG)5 oligonucleotide as a primer showed clear polymorphisms among the different L. deliciosus isolates. The patterns of mycorrhiza samples showed additional bands corresponding to the plant DNA. Single strand conformation polymorphism (SSCP) analysis of the specific rDNA ITS fragment amplified from 18 L. deliciosus isolates showed nine clearly different patterns. Mycorrhiza and soil samples showed coincident patterns with their respective fungal isolates. Specific rDNA ITS amplifications had not been previously used for SSCP analysis of ectomycorrhizas and extraradical mycelium. This relatively simple and inexpensive technique allows tracking L. deliciosus isolates in different stages of the fungus development. Specific ITS-SSCP analysis is promising in studies of the persistence of inoculated L. deliciosus isolates and their competitiveness with native ectomycorrhizal fungi, especially at the extraradical mycelium stage
    corecore