790 research outputs found

    10 to 50 nm Long Quasi Ballistic Carbon Nanotube Devices Obtained Without Complex Lithography

    Full text link
    A simple method combining photolithography and shadow (or angle) evaporation is developed to fabricate single-walled carbon nanotube (SWCNT) devices with tube lengths L~10-50 nm between metal contacts. Large numbers of such short devices are obtained without the need of complex tools such as electron beam lithography. Metallic SWCNTs with lengths ~ 10 nm, near the mean free path (mfp) of lop~15 nm for optical phonon scattering, exhibit near-ballistic transport at high biases and can carry unprecedented 100 mA currents per tube. Semiconducting SWCNT field-effect transistors (FETs) with ~ 50 nm channel lengths are routinely produced to achieve quasi-ballistic operations for molecular transistors. The results demonstrate highly length-scaled and high-performance interconnects and transistors realized with SWCNTs.Comment: PNAS, in pres

    Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance

    Get PDF
    Carbon Nanotube (CNT) appears as a promising candidate to shrink field-effect transistors (FET) to the nanometer scale. Extensive experimental works have been performed recently to develop the appropriate technology and to explore DC characteristics of carbon nanotube field effect transistor (CNTFET). In this work, we present results of Monte Carlo simulation of a coaxially gated CNTFET including electron-phonon scattering. Our purpose is to present the intrinsic transport properties of such material through the evaluation of electron mean-free-path. To highlight the potential of high performance level of CNTFET, we then perform a study of DC characteristics and of the impact of capacitive effects. Finally, we compare the performance of CNTFET with that of Si nanowire MOSFET.Comment: 15 pages, 14 figures, final version to be published in C. R. Acad. Sci. Pari

    Mechanism of Ambipolar Field-Effect Carrier Injections in One-Dimensional Mott Insulators

    Full text link
    To clarify the mechanism of recently reported, ambipolar carrier injections into quasi-one-dimensional Mott insulators on which field-effect transistors are fabricated, we employ the one-dimensional Hubbard model attached to a tight-binding model for source and drain electrodes. To take account of the formation of Schottky barriers, we add scalar and vector potentials, which satisfy the Poisson equation with boundary values depending on the drain voltage, the gate bias, and the work-function difference. The current-voltage characteristics are obtained by solving the time-dependent Schr\"odinger equation in the unrestricted Hartree-Fock approximation. Its validity is discussed with the help of the Lanczos method applied to small systems. We find generally ambipolar carrier injections in Mott insulators even if the work function of the crystal is quite different from that of the electrodes. They result from balancing the correlation effect with the barrier effect. For the gate-bias polarity with higher Schottky barriers, the correlation effect is weakened accordingly, owing to collective transport in the one-dimensional correlated electron systems.Comment: 21 pages, 10 figures, to appear in J. Phys. Soc. Jp

    Unexpected Scaling of the Performance of Carbon Nanotube Transistors

    Full text link
    We show that carbon nanotube transistors exhibit scaling that is qualitatively different than conventional transistors. The performance depends in an unexpected way on both the thickness and the dielectric constant of the gate oxide. Experimental measurements and theoretical calculations provide a consistent understanding of the scaling, which reflects the very different device physics of a Schottky barrier transistor with a quasi-one-dimensional channel contacting a sharp edge. A simple analytic model gives explicit scaling expressions for key device parameters such as subthreshold slope, turn-on voltage, and transconductance.Comment: 4 pages, 4 figure

    Ground-state energy of the electron liquid in ultrathin wires

    Full text link
    The ground-state energy and the density correlation function of the electron liquid in a thin one-dimensional wire are computed. The calculation is based on an approximate mapping of the problem with a realistic Coulomb interaction law onto exactly solvable models of mathematical physics. This approach becomes asymptotically exact in the limit of small wire radius but remains numerically accurate even for modestly thin wires.Comment: (v3) Replaced with the published version. 4 pages, 1 figur

    Scaling analysis of Schottky barriers at metal-embedded semiconducting carbon nanotube interfaces

    Full text link
    We present an atomistic self-consistent tight-binding study of the electronic and transport properties of metal-semiconducting carbon nanotube interfaces as a function of the nanotube channel length when the end of the nanotube wire is buried inside the electrodes. We show that the lineup of the nanotube band structure relative to the metal Fermi-level depends strongly on the metal work function but weakly on the details of the interface. We analyze the length-dependent transport characteristics, which predicts a transition from tunneling to thermally-activated transport with increasing nanotube channel length.Comment: To appear in Phys.Rev.B Rapid Communications. Color figures available in PRB online versio

    Microwave Transport in Metallic Single-Walled Carbon Nanotubes

    Full text link
    The dynamical conductance of electrically contacted single-walled carbon nanotubes is measured from dc to 10 GHz as a function of source-drain voltage in both the low-field and high-field limits. The ac conductance of the nanotube itself is found to be equal to the dc conductance over the frequency range studied for tubes in both the ballistic and diffusive limit. This clearly demonstrates that nanotubes can carry high-frequency currents at least as well as dc currents over a wide range of operating conditions. Although a detailed theoretical explanation is still lacking, we present a phenomenological model of the ac impedance of a carbon nanotube in the presence of scattering that is consistent with these results.Comment: Added reference

    Carbon Nanotube Field-Effect Transistors With Integrated Ohmic Contacts and High-k Gate Dielectrics

    Full text link
    High performance enhancement mode semiconducting carbon nanotube field-effect transistors (CNTFETs) are obtained by combining ohmic metal-tube contacts, high dielectric constant HfO2 films as gate insulators, and electrostatically doped nanotube segments as source/drain electrodes. The combination of these elements affords high ON currents, subthreshold swings of ~ 70-80 mV/decade, and allows for low OFF currents and suppressed ambipolar conduction. The doped source and drain approach resembles that of MOSFETs and can impart excellent OFF states to nanotube FETs under aggressive vertical scaling. This presents an important advantage over devices with metal source/drain, or devices commonly referred to as Schottky barrier FETs

    Suppressing Diffusion-Mediated Exciton Annihilation in 2D Semiconductors Using the Dielectric Environment

    Full text link
    Atomically thin semiconductors such as monolayer MoS2 and WS2 exhibit nonlinear exciton-exciton annihilation at notably low excitation densities (below ~10 excitons/um2 in MoS2). Here, we show that the density threshold at which annihilation occurs can be tuned by changing the underlying substrate. When the supporting substrate is changed from SiO2 to Al2O3 or SrTiO3, the rate constant for second-order exciton-exciton annihilation, k_XX [cm2/s], is reduced by one or two orders of magnitude, respectively. Using transient photoluminescence microscopy, we measure the effective room-temperature exciton diffusion coefficient in chemical-treated MoS2 to be D = 0.06 +/- 0.01 cm2/s, corresponding to a diffusion length of LD = 350 nm for an exciton lifetime of {\tau} = 20 ns, which is independent of the substrate. These results, together with numerical simulations, suggest that the effective exciton-exciton annihilation radius monotonically decreases with increasing refractive index of the underlying substrate. Exciton-exciton annihilation limits the overall efficiency of 2D semiconductor devices operating at high exciton densities; the ability to tune these interactions via the dielectric environment is an important step toward more efficient optoelectronic technologies featuring atomically thin materials
    • …
    corecore