1,875 research outputs found

    10 to 50 nm Long Quasi Ballistic Carbon Nanotube Devices Obtained Without Complex Lithography

    Full text link
    A simple method combining photolithography and shadow (or angle) evaporation is developed to fabricate single-walled carbon nanotube (SWCNT) devices with tube lengths L~10-50 nm between metal contacts. Large numbers of such short devices are obtained without the need of complex tools such as electron beam lithography. Metallic SWCNTs with lengths ~ 10 nm, near the mean free path (mfp) of lop~15 nm for optical phonon scattering, exhibit near-ballistic transport at high biases and can carry unprecedented 100 mA currents per tube. Semiconducting SWCNT field-effect transistors (FETs) with ~ 50 nm channel lengths are routinely produced to achieve quasi-ballistic operations for molecular transistors. The results demonstrate highly length-scaled and high-performance interconnects and transistors realized with SWCNTs.Comment: PNAS, in pres

    Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance

    Get PDF
    Carbon Nanotube (CNT) appears as a promising candidate to shrink field-effect transistors (FET) to the nanometer scale. Extensive experimental works have been performed recently to develop the appropriate technology and to explore DC characteristics of carbon nanotube field effect transistor (CNTFET). In this work, we present results of Monte Carlo simulation of a coaxially gated CNTFET including electron-phonon scattering. Our purpose is to present the intrinsic transport properties of such material through the evaluation of electron mean-free-path. To highlight the potential of high performance level of CNTFET, we then perform a study of DC characteristics and of the impact of capacitive effects. Finally, we compare the performance of CNTFET with that of Si nanowire MOSFET.Comment: 15 pages, 14 figures, final version to be published in C. R. Acad. Sci. Pari

    Mechanism of Ambipolar Field-Effect Carrier Injections in One-Dimensional Mott Insulators

    Full text link
    To clarify the mechanism of recently reported, ambipolar carrier injections into quasi-one-dimensional Mott insulators on which field-effect transistors are fabricated, we employ the one-dimensional Hubbard model attached to a tight-binding model for source and drain electrodes. To take account of the formation of Schottky barriers, we add scalar and vector potentials, which satisfy the Poisson equation with boundary values depending on the drain voltage, the gate bias, and the work-function difference. The current-voltage characteristics are obtained by solving the time-dependent Schr\"odinger equation in the unrestricted Hartree-Fock approximation. Its validity is discussed with the help of the Lanczos method applied to small systems. We find generally ambipolar carrier injections in Mott insulators even if the work function of the crystal is quite different from that of the electrodes. They result from balancing the correlation effect with the barrier effect. For the gate-bias polarity with higher Schottky barriers, the correlation effect is weakened accordingly, owing to collective transport in the one-dimensional correlated electron systems.Comment: 21 pages, 10 figures, to appear in J. Phys. Soc. Jp

    Unexpected Scaling of the Performance of Carbon Nanotube Transistors

    Full text link
    We show that carbon nanotube transistors exhibit scaling that is qualitatively different than conventional transistors. The performance depends in an unexpected way on both the thickness and the dielectric constant of the gate oxide. Experimental measurements and theoretical calculations provide a consistent understanding of the scaling, which reflects the very different device physics of a Schottky barrier transistor with a quasi-one-dimensional channel contacting a sharp edge. A simple analytic model gives explicit scaling expressions for key device parameters such as subthreshold slope, turn-on voltage, and transconductance.Comment: 4 pages, 4 figure

    19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact.

    Get PDF
    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm2 and a high power conversion efficiency of 19.2%
    corecore