263 research outputs found

    Reentrance of disorder in the anisotropic shuriken Ising model

    Full text link
    For a material to order upon cooling is common sense. What is more seldom is for disorder to reappear at lower temperature, which is known as reentrant behavior. Such resurgence of disorder has been observed in a variety of systems, ranging from Rochelle salts to nematic phases in liquid crystals. Frustration is often a key ingredient for reentrance mechanisms. Here we shall study a frustrated model, namely the anisotropic shuriken lattice, which offers a natural setting to explore an extension of the notion of reentrance between magnetic disordered phases. By tuning the anisotropy of the lattice, we open a window in the phase diagram where magnetic disorder prevails down to zero temperature. In this region, the competition between multiple disordered ground states gives rise to a double crossover where both the low- and high-temperature regimes are less correlated than the intervening classical spin liquid. This reentrance of disorder is characterized by an entropy plateau, a multi-step Curie law crossover and a rather complex diffuse scattering in the static structure factor. Those results are confirmed by complementary numerical and analytical methods: Monte Carlo simulations, Husimi-tree calculations and an exact decoration-iteration transformation.Comment: 16 pages, 13 figure

    Crystal Shape-Dependent Magnetic Susceptibility and Curie Law Crossover in the Spin Ices Dy2Ti2O7 and Ho2Ti2O7

    Full text link
    We present an experimental determination of the isothermal magnetic susceptibility of the spin ice materials Dy2Ti2O7 and Ho2Ti2O7 in the temperature range 1.8-300 K. The use of spherical crystals has allowed the accurate correction for demagnetizing fields and allowed the true bulk isothermal susceptibility X_T(T) to be estimated. This has been compared to a theoretical expression based on a Husimi tree approximation to the spin ice model. Agreement between experiment and theory is excellent at T > 10 K, but systematic deviations occur below that temperature. Our results largely resolve an apparent disagreement between neutron scattering and bulk measurements that has been previously noted. They also show that the use of non-spherical crystals in magnetization studies of spin ice may introduce very significant systematic errors, although we note some interesting - and possibly new - systematics concerning the demagnetizing factor in cuboidal samples. Finally, our results show how experimental susceptibility measurements on spin ices may be used to extract the characteristic energy scale of the system and the corresponding chemical potential for emergent magnetic monopoles.Comment: 11 pages, 3 figures 1 table. Manuscript submitte

    Classical spin liquids in stacked triangular lattice Ising antiferromagnets

    Full text link
    We study Ising antiferromagnets that have nearest-neighbour interactions on multilayer triangular lattices with frustrated (abcabc and abababab) stacking, and make comparisons with the unfrustrated (aaaaaa) stacking. If interlayer couplings are much weaker than in-plane ones, the paramagnetic phase of models with frustrated stackings has a classical spin-liquid regime at low temperature, in which correlations are strong both within and between planes, but there is no long-range order. We investigate this regime using Monte Carlo simulations and by mapping the spin models to coupled height models, which are treated using renormalisation group methods and an analysis of the effects of vortex excitations. The classical spin-liquid regime is parametrically wide at small interlayer coupling in models with frustrated stackings. By contrast, for the unfrustrated stacking there is no extended regime in which interlayer correlations are strong without three-dimensional order.Comment: 25 pages, 21 figures; version to appear in Physical Review B, includes minor correction

    Magnetic Monopole Dynamics in Spin Ice

    Full text link
    One of the most remarkable examples of emergent quasi-particles, is that of the "fractionalization" of magnetic dipoles in the low energy configurations of materials known as "spin ice", into free and unconfined magnetic monopoles interacting via Coulomb's 1/r law [Castelnovo et. al., Nature, 451, 42-45 (2008)]. Recent experiments have shown that a Coulomb gas of magnetic charges really does exist at low temperature in these materials and this discovery provides a new perspective on otherwise largely inaccessible phenomenology. In this paper, after a review of the different spin ice models, we present detailed results describing the diffusive dynamics of monopole particles starting both from the dipolar spin ice model and directly from a Coulomb gas within the grand canonical ensemble. The diffusive quasi-particle dynamics of real spin ice materials within "quantum tunneling" regime is modeled with Metropolis dynamics, with the particles constrained to move along an underlying network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac monopoles.Comment: 26 pages, 12 figure

    Analysis of a fully packed loop model arising in a magnetic Coulomb phase

    Full text link
    The Coulomb phase of spin ice, and indeed the Ic phase of water ice, naturally realise a fully-packed two-colour loop model in three dimensions. We present a detailed analysis of the statistics of these loops, which avoid themselves and other loops of the same colour, and contrast their behaviour to an analogous two-dimensional model. The properties of another extended degree of freedom are also addressed, flux lines of the emergent gauge field of the Coulomb phase, which appear as "Dirac strings" in spin ice. We mention implications of these results for related models, and experiments.Comment: 5 pages, 4 figure

    The Kasteleyn transition in three dimensions: spin ice in a [100] field

    Get PDF
    We discuss the nearest neighbour spin ice model in the presence of a magnetic field placed along the cubic [100] direction. As recently shown in Phys. Rev. Lett. 100, 067207, 2008, the symmetry sustaining ordering transition observed at low temperature is a three dimensional Kasteleyn transition. We confirm this with numerical data using a non-local algorithm that conserves the topological constraints at low temperature and from analytic calculations from a Bethe lattice of corner sharing tetrahedra . We present a thermodynamic description of the Kasteleyn transition and discuss the relevance of our results to recent neutron scattering experiments on spin ice materials

    Are multiphase competition & order-by-disorder the keys to understanding Yb2Ti2O7?

    Full text link
    If magnetic frustration is most commonly known for undermining long-range order, as famously illustrated by spin liquids, the ability of matter to develop new collective mechanisms in order to fight frustration is no less fascinating, providing an avenue for the exploration and discovery of unconventional properties of matter. Here we study an ideal minimal model of such mechanisms which, incidentally, pertains to the perplexing quantum spin ice candidate Yb2Ti2O7. Specifically, we explain how thermal and quantum fluctuations, optimized by order-by-disorder selection, conspire to expand the stability region of an accidentally degenerate continuous symmetry U(1) manifold against the classical splayed ferromagnetic ground state that is displayed by the sister compound Yb2Sn2O7. The resulting competition gives rise to multiple phase transitions, in striking similitude with recent experiments on Yb2Ti2O7 [Lhotel et al., Phys. Rev. B 89 224419 (2014)]. Considering the effective Hamiltonian determined for Yb2Ti2O7, we provide, by combining a gamut of numerical techniques, compelling evidence that such multiphase competition is the long-sought missing key to understanding the intrinsic properties of this material. As a corollary, our work offers a pertinent illustration of the influence of chemical pressure in rare-earth pyrochlores.Comment: 9 page

    Semiclassical Tunneling of Wavepackets with Real Trajectories

    Get PDF
    Semiclassical approximations for tunneling processes usually involve complex trajectories or complex times. In this paper we use a previously derived approximation involving only real trajectories propagating in real time to describe the scattering of a Gaussian wavepacket by a finite square potential barrier. We show that the approximation describes both tunneling and interferences very accurately in the limit of small Plank's constant. We use these results to estimate the tunneling time of the wavepacket and find that, for high energies, the barrier slows down the wavepacket but that it speeds it up at energies comparable to the barrier height.Comment: 23 pages, 7 figures Revised text and figure

    Out-of-equilibrium relaxation of the Edwards-Wilkinson elastic line

    Full text link
    We study the non-equilibrium relaxation of an elastic line described by the Edwards-Wilkinson equation. Although this model is the simplest representation of interface dynamics, we highlight that many (not though all) important aspects of the non-equilibrium relaxation of elastic manifolds are already present in such quadratic and clean systems. We analyze in detail the aging behaviour of several two-times averaged and fluctuating observables taking into account finite-size effects and the crossover to the stationary and equilibrium regimes. We start by investigating the structure factor and extracting from its decay a growing correlation length. We present the full two-times and size dependence of the interface roughness and we generalize the Family-Vicsek scaling form to non-equilibrium situations. We compute the incoherent cattering function and we compare it to the one measured in other glassy systems. We analyse the response functions, the violation of the fluctuation-dissipation theorem in the aging regime, and its crossover to the equilibrium relation in the stationary regime. Finally, we study the out-of-equilibrium fluctuations of the previously studied two-times functions and we characterize the scaling properties of their probability distribution functions. Our results allow us to obtain new insights into other glassy problems such as the aging behavior in colloidal glasses and vortex glasses.Comment: 33 pages, 16 fig

    Scaffolding School Pupils’ Scientific Argumentation with Evidence-Based Dialogue Maps

    Get PDF
    This chapter reports pilot work investigating the potential of Evidence-based Dialogue Mapping to scaffold young teenagers’ scientific argumentation. Our research objective is to better understand pupils’ usage of dialogue maps created in Compendium to write scientific ex-planations. The participants were 20 pupils, 12-13 years old, in a summer science course for “gifted and talented” children in the UK. Through qualitative analysis of three case studies, we investigate the value of dialogue mapping as a mediating tool in the scientific reasoning process during a set of learning activities. These activities were published in an online learning envi-ronment to foster collaborative learning. Pupils mapped their discussions in pairs, shared maps via the online forum and in plenary discussions, and wrote essays based on their dialogue maps. This study draws on these multiple data sources: pupils’ maps in Compendium, writings in science and reflective comments about the uses of mapping for writing. Our analysis highlights the diversity of ways, both successful and unsuccessful, in which dialogue mapping was used by these young teenagers
    • …
    corecore