2 research outputs found

    Streptocollin, a Type IV Lanthipeptide Produced by Streptomyces collinus Tü 365

    Get PDF
    Lanthipeptides are ribosomally synthesized and post-translationally modified microbial secondary metabolites. Here, we report the identification and isolation of streptocollin from Streptomyces collinus Tü 365, a new member of class IV lanthipeptides. Insertion of the constitutive ermE* promoter upstream of the lanthipeptide synthetase gene stcL resulted in peptide production. The streptocollin gene cluster was heterologously expressed in S. coelicolor M1146 and M1152 with 3.5- and 5.5-fold increased yields, respectively. The structure and ring topology of streptocollin were determined by high resolution MS/MS analysis. Streptocollin contains four macrocyclic rings, with one lanthionine and three methyllanthionine residues. To the best of our knowledge, this is the first report on the isolation of a class IV lanthipeptide in preparative amounts, and on the successful heterologous expression of a class IV lanthipeptide gene cluster

    Discovery of the Lanthipeptide Curvocidin and Structural Insights into its Trifunctional Synthetase CuvL

    Get PDF
    Lanthipeptides are ribosomally-synthesized natural products from bacteria featuring stable thioether-crosslinks and various bioactivities. Herein, we report on a new clade of tricyclic class-IV lanthipeptides with curvocidin from Thermomonospora curvata as its first representative. We obtained crystal structures of the corresponding lanthipeptide synthetase CuvL that showed a circular arrangement of its kinase, lyase and cyclase domains, forming a central reaction chamber for the iterative substrate processing involving nine catalytic steps. The combination of experimental data and artificial intelligence-based structural models identified the N-terminal subdomain of the kinase domain as the primary site of substrate recruitment. The ribosomal precursor peptide of curvocidin employs an amphipathic α-helix in its leader region as an anchor to CuvL, while its substrate core shuttles within the central reaction chamber. Our study thus reveals general principles of domain organization and substrate recruitment of class-IV and class-III lanthipeptide synthetases.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Research Training Group RTG 2473 "Bioactive Peptides"RTG 2473 "Bioactive Peptides"Peer Reviewe
    corecore