7 research outputs found

    Analysis of Reaction Intermediates in Tryptophan 2,3-Dioxygenase: A Comparison with Indoleamine 2,3-Dioxygenase.

    Full text link
    Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are heme-containing enzymes that catalyze the O2-dependent oxidation of l-tryptophan (l-Trp) in biological systems. Although many decades have passed since their discovery, the mechanism of tryptophan oxidation has not been established. It has been widely assumed that IDO and TDO react using the same mechanism, although there is no evidence that they do. For IDO, a Compound II (ferryl) species accumulates in the steady state and is implicated in the mechanism; in TDO, no such species has ever been observed. In this paper, we examine the kinetics of tryptophan oxidation in TDO. We find no evidence for the accumulation of Compound II during TDO catalysis. Instead, a ternary [Fe(II)-O2, l-Trp] complex is detected under steady state conditions. The absence of a Compound II species in the steady state in TDO is not due to an intrinsic inability of the TDO enzyme to form ferryl heme, because Compound II can be formed directly through a different route in which ferrous heme is reacted with peroxide. We interpret the data to mean that the rate-limiting step in the IDO and TDO mechanisms is not the same

    Halide and Proton Binding Kinetics of Yellow Fluorescent Protein Variants

    No full text
    A T203Y substitution in green fluorescent protein causes a red shift in emission to yield a class of mutants known as yellow fluorescent protein (YFP). Many of these YFP mutants bind halides with affinities in the millimolar range, which often results in the chromophore p<i>K</i> values being shifted into the physiological range. While such sensitivities may be exploited for halide and pH sensors, it is desirable to reduce such environmental sensitivities in other studies, such as in Förster resonance energy transfer probes to measure conformational changes within fusion proteins. Venus and Citrine are two such variants that have been developed with much reduced halide sensitivities. Here we compare the kinetics of halide binding, and the coupled protonation reaction, for several YFP variants and detect slow kinetics (dissociation rate constants in the range of 0.1–1 s<sup>–1</sup>), indicative of binding to an internal site, in all cases. The effective halide affinity for Venus and Citrine is much reduced compared with that of the original YFP 10C construct, primarily through a reduced association rate constant. Nuclear magnetic resonance studies of YFP 10C confirm halide binding occurs on a slow time scale (<4 s<sup>–1</sup>) and that perturbations in the chemical shift occur throughout the sequence and structure

    Solution structure of the cytochrome P450 reductase–cytochrome c complex determined by neutron scattering

    No full text
    Electron transfer in all living organisms critically relies on formation of complexes between the proteins involved. The function of these complexes requires specificity of the interaction to allow for selective electron transfer but also a fast turnover of the complex, and they are therefore often transient in nature, making them challenging to study. Here, using small-angle neutron scattering with contrast matching with deuterated protein, we report the solution structure of the electron transfer complex between cytochrome P450 reductase (CPR) and its electron transfer partner cytochrome c This is the first reported solution structure of a complex between CPR and an electron transfer partner. The structure shows that the interprotein interface includes residues from both the FMN- and FAD-binding domains of CPR. In addition, the FMN is close to the heme of cytochrome c but distant from the FAD, indicating that domain movement is required between the electron transfer steps in the catalytic cycle of CPR. In summary, our results reveal key details of the CPR catalytic mechanism, including interactions of two domains of the reductase with cytochrome c and motions of these domains relative to one another. These findings shed light on interprotein electron transfer in this system and illustrate a powerful approach for studying solution structures of protein-protein complexes

    The Mechanism of Substrate Inhibition in Human Indoleamine 2,3-Dioxygenase

    No full text
    Indoleamine 2,3-dioxygenase catalyzes the O<sub>2</sub>-dependent oxidation of l-tryptophan (l-Trp) to <i>N</i>-formylkynurenine (NFK) as part of the kynurenine pathway. Inhibition of enzyme activity at high l-Trp concentrations was first noted more than 30 years ago, but the mechanism of inhibition has not been established. Using a combination of kinetic and reduction potential measurements, we present evidence showing that inhibition of enzyme activity in human indoleamine 2,3-dioxygenase (hIDO) and a number of site-directed variants during turnover with l-tryptophan (l-Trp) can be accounted for by the sequential, ordered binding of O<sub>2</sub> and l-Trp. Analysis of the data shows that at low concentrations of l-Trp, O<sub>2</sub> binds first followed by the binding of l-Trp; at higher concentrations of l-Trp, the order of binding is reversed. In addition, we show that the heme reduction potential (<i>E</i><sub>m</sub><sup>0</sup>) has a regulatory role in controlling the overall rate of catalysis (and hence the extent of inhibition) because there is a quantifiable correlation between <i>E</i><sub>m</sub><sup>0</sup> (that increases in the presence of l-Trp) and the rate constant for O<sub>2</sub> binding. This means that the initial formation of ferric superoxide (Fe<sup>3+</sup>–O<sub>2</sub><sup>•–</sup>) from Fe<sup>2+</sup>-O<sub>2</sub> becomes thermodynamically less favorable as substrate binds, and we propose that it is the slowing down of this oxidation step at higher concentrations of substrate that is the origin of the inhibition. In contrast, we show that regeneration of the ferrous enzyme (and formation of NFK) in the final step of the mechanism, which formally requires reduction of the heme, is facilitated by the higher reduction potential in the substrate-bound enzyme and the two constants (<i>k</i><sub>cat</sub> and <i>E</i><sub>m</sub><sup>0</sup>) are shown also to be correlated. Thus, the overall catalytic activity is balanced between the equal and opposite dependencies of the initial and final steps of the mechanism on the heme reduction potential. This tuning of the reduction potential provides a simple mechanism for regulation of the reactivity, which may be used more widely across this family of enzymes

    A simple method for the determination of reduction potentials in heme proteins

    Full text link
    We describe a simple method for the determination of heme protein reduction potentials. We use the method to determine the reduction potentials for the PAS-A domains of the regulatory heme proteins human NPAS2 (E[subscript m] = ˗115 mV ± 2 mV, pH 7.0) and human CLOCK (E[subscript m] = ˗111 mV ± 2 mV, pH 7.0). We suggest that the method can be easily and routinely applied to the determination of reduction potentials across the family of heme proteins

    Characterizing the protein–protein interaction between MDM2 and 14-3-3σ; proof of concept for small molecule stabilization

    No full text
    Mouse Double Minute 2 (MDM2) is a key negative regulator of the tumor suppressor protein p53. MDM2 overexpression occurs in many types of cancer and results in the suppression of WT p53. The 14-3-3 family of adaptor proteins are known to bind MDM2 and the 14-3-3σ isoform controls MDM2 cellular localization and stability to inhibit its activity. Therefore, small molecule stabilization of the 14-3-3σ/MDM2 protein-protein interaction (PPI) is a potential therapeutic strategy for the treatment of cancer. Here, we provide a detailed biophysical and structural characterization of the phosphorylation-dependent interaction between 14-3-3σ and peptides that mimic the 14-3-3 binding motifs within MDM2. The data show that di-phosphorylation of MDM2 at S166 and S186 is essential for high affinity 14-3-3 binding and that the binary complex formed involves one MDM2 di-phosphorylated peptide bound to a dimer of 14-3-3σ. However, the two phosphorylation sites do not simultaneously interact so as to bridge the 14-3-3 dimer in a 'multivalent' fashion. Instead, the two phosphorylated MDM2 motifs 'rock' between the two binding grooves of the dimer, which is unusual in the context of 14-3-3 proteins. In addition, we show that the 14-3-3σ-MDM2 interaction is amenable to small molecule stabilization. The natural product fusicoccin A forms a ternary complex with a 14-3-3σ dimer and an MDM2 di-phosphorylated peptide resulting in the stabilization of the 14-3-3σ/MDM2 PPI. This work serves as a proof-of-concept of the drugability of the 14-3-3/MDM2 PPI and paves the way toward the development of more selective and efficacious small molecule stabilizers.</p

    Characterizing the protein–protein interaction between MDM2 and 14-3-3σ; proof of concept for small molecule stabilization

    No full text
    Mouse Double Minute 2 (MDM2) is a key negative regulator of the tumor suppressor protein p53. MDM2 overexpression occurs in many types of cancer and results in the suppression of WT p53. The 14-3-3 family of adaptor proteins are known to bind MDM2 and the 14-3-3σ isoform controls MDM2 cellular localization and stability to inhibit its activity. Therefore, small molecule stabilization of the 14-3-3σ/MDM2 protein-protein interaction (PPI) is a potential therapeutic strategy for the treatment of cancer. Here, we provide a detailed biophysical and structural characterization of the phosphorylation-dependent interaction between 14-3-3σ and peptides that mimic the 14-3-3 binding motifs within MDM2. The data show that di-phosphorylation of MDM2 at S166 and S186 is essential for high affinity 14-3-3 binding and that the binary complex formed involves one MDM2 di-phosphorylated peptide bound to a dimer of 14-3-3σ. However, the two phosphorylation sites do not simultaneously interact so as to bridge the 14-3-3 dimer in a 'multivalent' fashion. Instead, the two phosphorylated MDM2 motifs 'rock' between the two binding grooves of the dimer, which is unusual in the context of 14-3-3 proteins. In addition, we show that the 14-3-3σ-MDM2 interaction is amenable to small molecule stabilization. The natural product fusicoccin A forms a ternary complex with a 14-3-3σ dimer and an MDM2 di-phosphorylated peptide resulting in the stabilization of the 14-3-3σ/MDM2 PPI. This work serves as a proof-of-concept of the drugability of the 14-3-3/MDM2 PPI and paves the way toward the development of more selective and efficacious small molecule stabilizers.</p
    corecore