265 research outputs found

    Functional interface micromechanics of 11 en-bloc retrieved cemented femoral hip replacements

    Get PDF
    Contains fulltext : 88556.pdf (publisher's version ) (Open Access)BACKGROUND AND PURPOSE: Despite the longstanding use of micromotion as a measure of implant stability, direct measurement of the micromechanics of implant/bone interfaces from en bloc human retrievals has not been performed. The purpose of this study was to determine the stem-cement and cement-bone micromechanics of functionally loaded, en-bloc retrieved, cemented femoral hip components. METHODS: 11 fresh frozen proximal femurs with cemented implants were retrieved at autopsy. Specimens were sectioned transversely into 10-mm slabs and fixed to a loading device where functional torsional loads were applied to the stem. A digital image correlation technique was used to document micromotions at stem-cement and cement-bone interfaces during loading. RESULTS: There was a wide range of responses with stem-cement micromotions ranging from 0.0006 mm to 0.83 mm (mean 0.17 mm, SD 0.29) and cement-bone micromotions ranging from 0.0022 mm to 0.73 mm (mean 0.092 mm, SD 0.22). There was a strong (linear-log) inverse correlation between apposition fraction and micromotion at the stem-cement interface (r(2) = 0.71, p < 0.001). There was a strong inverse log-log correlation between apposition fraction at the cement-bone interface and micromotion (r(2) = 0.85, p < 0.001). Components that were radiographically well-fixed had a relatively narrow range of micromotions at the stem-cement (0.0006-0.057 mm) and cement-bone (0.0022-0.029 mm) interfaces. INTERPRETATION: Minimizing gaps at the stem-cement interface and encouraging bony apposition at the cement-bone interface would be clinically desirable. The cement-bone interface does not act as a bonded interface in actual use, even in radiographically well-fixed components. Rather, the interface is quite compliant, with sliding and opening motions between the cement and bone surfaces.1 juni 201

    Mechanical failure of cemented femoral total hip replacement

    Get PDF
    A review, with 17 refs. Factors which affect mech. failure of cemented femoral total hip replacement, i.e., external load, materials, geometry, and interfaces, are discussed

    Perspectives on metaphyseal conservative stems

    Get PDF
    Total hip replacement is showing, during the last decades, a progressive evolution toward principles of reduced bone and soft tissue aggression. These principles have become the basis of a new philosophy, tissue sparing surgery. Regarding hip implants, new conservative components have been proposed and developed as an alternative to conventional stems. Technical and biomechanical characteristics of metaphyseal bone-stock-preserving stems are analyzed on the basis of the available literature and our personal experience. Mayo, Nanos and Metha stems represent, under certain aspects, a design evolution starting from shared concepts: reduced femoral violation, non-anatomic geometry, proximal calcar loading and lateral alignment. However, consistent differences are level of neck preservation, cross-sectional geometry and surface finishing. The Mayo component is the most time-tested component and, in our hands, it showed an excellent survivorship at the mid-term follow-up, with an extremely reduced incidence of aseptic loosening (partially reduced by the association with last generation acetabular couplings). For 160 implants followed for a mean of 4.7 years, survivorship was 97.5% with 4 failed implants: one fracture with unstable stem, 1 septic loosening and 2 aseptic mobilizations. DEXA analysis, performed on 15 cases, showed a good calcar loading and stimulation, but there was significant lateral load transfer to R3–R4 zones, giving to the distal part of the stem a function not simply limited to alignment. Metaphyseal conservative stems demonstrated a wide applicability with an essential surgical technique. Moreover, they offer the options of a “conservative revision” with a conventional primary component in case of failure and a “conservative revision” for failed resurfacing implants

    Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions

    Full text link
    We evaluate the virial coefficients B_k for k<=10 for hard spheres in dimensions D=2,...,8. Virial coefficients with k even are found to be negative when D>=5. This provides strong evidence that the leading singularity for the virial series lies away from the positive real axis when D>=5. Further analysis provides evidence that negative virial coefficients will be seen for some k>10 for D=4, and there is a distinct possibility that negative virial coefficients will also eventually occur for D=3.Comment: 33 pages, 12 figure

    Femoral revision knee Arthroplasty with Metaphyseal sleeves: the use of a stem is not mandatory of a structural point of view

    Get PDF
    Purpose Metaphyseal sleeves are an option for patients with severe metaphyseal bony defects requiring TKA revision. Although sleeves are usually used with stems, little is known about the exact contribution/need of the stem for the initial sleeve-bone interface stability, particularly in the femur, if the intramedullary canal is deformed or bowed. It is hypothesised that diaphyseal-stem addition increases the sleeve-femur interface stability and the strain-shielding effect on the metaphyseal femur relatively to the stemless condition. Material and methods Synthetic-femur was used to measure cortex strain behaviour and implant cortex micromotions for three techniques: only femoral-component, stemless-sleeve and stemmed-sleeve. Paired t-tests were performed to evaluate the statistical significance of the difference between mean principal strains and implant-cortex micromotions. Finite-element models were developed to assess the cancellous-bone strain behaviour and sleeve-bone interface micromotions; these models were validated against the measurements. Results Cortex strains are reduced significantly (p<0.05) in 83% of strain gauges on stemmed-sleeve, which compares with 33% in stemless condition. Both techniques presented a cancellous bone strain reduction of 50% at the distal region and an increase of nearly four times at the sleeve proximal region relative to the model only with the femoral component. Both techniques presented sleeve-bone micromotions amplitude below 50-150ÎĽm, suitable for bone ingrowth. Conclusions The use of a supplemental diaphyseal-stem potentiates the risk of cortex bone resorption compared with the stemless-sleeve condition; however, the stem is not vital for increasing the initial sleeve-bone stability and has a minor effect on the cancellous-bone strain behaviour. Of a purely structural point view, appears that the use of a diaphyseal-femoral-stem with the metaphyseal sleeve is not mandatory in the revision TKA which is particularly relevant in cases where the use of stems is impracticable.publishe

    Finite element analysis of the effect of cementing concepts on implant stability and cement fatigue failure

    Get PDF
    Background and purpose Two contradictory cementing techniques (using an undersized stem versus a canal-filling stem) can both lead to excellent survival rates, a phenomenon known as the “French paradox”. Furthermore, previous studies have indicated that the type of bone supporting the cement mantle may affect implant survival. To further evaluate the mechanical consequences of variations in cementing technique, we studied the effect of implant size and type of bone supporting the cement mantle on the mechanical performance of cemented total hip arthroplasty, using finite element analysis
    • …
    corecore