1 research outputs found

    Optical forces at the nanoscale: Size and electrostatic effects

    Full text link
    “This document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters copyright © American Chemical Society after peer review and technical editing by publisher. To acces final work see Optical Forces at the Nanoscale: Size and Electrostatic Effects, Nano Letters, 18.1 (2018), pags. 602-609. http://doi.org/10.1021/acs.nanolett.7b04804"The reduced magnitude of the optical trapping forces exerted over sub-200 nm dielectric nanoparticles complicates their optical manipulation, hindering the development of techniques and studies based on it. Improvement of trapping capabilities for such tiny objects requires a deep understanding of the mechanisms beneath them. Traditionally, the optical forces acting on dielectric nanoparticles have been only correlated with their volume, and the size has been traditionally identified as a key parameter. However, the most recently published research results have shown that the electrostatic characteristics of a sub-100 nm dielectric particle could also play a significant role. Indeed, at present it is not clear what optical forces depend. In this work, we designed a set of experiments in order to elucidate the different mechanism and properties (i.e., size and/or electrostatic properties) that governs the magnitude of optical forces. The comparison between experimental data and numerical simulations have shown that the double layer induced at nanoparticle’s surface, not considered in the classical description of nanoparticle’s polarizability, plays a relevant role determining the magnitude of the optical forces. Here, the presented results constitute the first step toward the development of the dielectric nanoparticle over which enhanced optical forces could be exerted, enabling their optical manipulation for multiples purposes ranging from fundamental to applied studiesThis work has been supported by the Spanish Ministerio de Economia y Competitividad (project Nr.MAT2016-75362-C3-1-R), FIS2015-69295-C3-3-P and the “MarĂ­a de Maeztu” Program Ref: MDM-2014-0377. P.R.S. thanks MINECO and the Fondo Social Europeo (FSE) for the “Promoción del talento y su Empleabilidad en I+D+i” statal program (BES-2014-069410). K.P. acknowledges financial support from the National Science Center Poland (NCN) under the ETIUDA doctoral scholarship on the basis of decision number DEC-2014/12/T/ST5/00646. A.B. acknowledges the statutory financial support from ILT&SR PAS. P.H.G. thanks MINECO for the Juan de la Cierva program (IJCI-2015- 24551). The European Upconversion Network (COST Action CM1403) is acknowledge
    corecore