8 research outputs found

    Effect of Shear Stress Direction on Endothelial Function and eNOS Phosphorylation in Soleus Feed Arteries

    Get PDF
    Blood flow feeding tissues and organs is closely regulated in order to meet metabolic and functional needs. Control of blood flow is accomplished by regulating the diameter of the arteries and arterioles feeding different organs. Several neural, hormonal, chemical and mechanical mechanisms contribute to the constriction and dilation of arteries. Shear stress, the frictional force created by streaming blood on the endothelial layer of arteries, is one of these mechanical mechanisms (1). Shear stress causes both acute and long term effects on endothelial cells (1,2,5). Blood in arteries typically flows away from the heart towards organs (causing antegrade shear stress) during cardiac contraction and briefly flows back toward the heart (causing retrograde shear stress) during cardiac filling. Retrograde flow occurs more often in some disease situations, and studies have shown that retrograde shear stress decreases endothelial cell function (3,4). The specific mechanisms for endothelial dysfunction are unknown, but altered mechanisms could include impaired cell signaling pathways. The most important endothelial cell dilatory signaling pathway is the production of nitric oxide (NO). Retrograde shear stress causes endothelial cells to secrete NO, and increased rates of shear stress cause increased expression and phosphorylation of nitric oxide synthase (eNOS). Regulatory phosphorylation of eNOS can potentially occur on at least four sites: Ser 1177, Ser 116, Ser 635 and Thr 497 (3). The most well characterized of these is Ser 1177, which is phosphorylated by a by PI3K/AKT shear dependent pathway. Regulating phosphorylation of eNOS is critical to endothelial health and maintaining cardiovascular equilibrium. Using rat soleus muscle feed arteries, we seek to determine the effects of changes in shear stress direction on both endothelial cell function and phosphorylation of eNOS at the Ser 1177 site

    Effect of Shear Stress on ecNOS Expression and Dilation in Soleus Feed Arteries

    Get PDF
    Shear stress causes artery dilation and increased expression of endothelial cell nitric oxide synthase (ecNOS) in coronary and placental arteries. We sought to determine the importance of shear stress in maintaining normal dilation and normal levels of ecNOS in rat soleus feed arteries (SFA). SFA were isolated from male Sprague-Dawley rats and cannulated for in vitro microscopy (Fig. 6). SFA were exposed to no shear stress, low shear stress, or high shear stress conditions for 4 hours. After 4 hours, endothelium-dependent dilation (acetylcholine: ACh) and endothelium-independent dilation (sodium nitroprusside: SNP) were tested. Arteries were then uncannulated, mRNA was isolated, and RT-PCR for ecNOS mRNA was performed to determine whether shear stress altered ecNOS gene expression. Shear stress did not alter dilation to ACh, but dilation to SNP was greater in the high shear stress arteries. ecNOS mRNA content was greater in high shear stress arteries than low shear stress arteries. These data indicate that altered wall shear stress conditions alter ecNOS gene expression and vascular smooth muscle cell function

    Flow Analysis through CollectorWell Laterals: A Case Study from Sonoma County Water Agency, California

    Get PDF
    The Sonoma County Water Agency (SWCA) uses six radial collector wells along the Russian River west of Santa Rosa, to provide water for several municipalities and water districts in north-western California. Three collector wells (1, 2, and 6) are located in the Wohler area, and three collector wells (3, 4, and 5) are located in the Mirabel area. The objective of this paper is to highlight the performance of the three collector wells located in the Mirabel area since their construction. The 2015 investigation showed a lower performance of Collectors 3 and 4 compared to their original performances after construction in 1975, while the performance of Collector 5 was relatively stable since 1982. The potential change in capacity could be due to the increase in encrustation observed during the visual inspection of laterals in all three collector wells. Overall, the three collectors are still within the optimal design parameters (screen entrance velocity \u3c 0.305 m min1 and axial flow velocity of lateral screens \u3c 1.524 m s1)

    Flow Analysis through Collector Well Laterals: A Case Study from Sonoma County Water Agency, California

    Get PDF
    The Sonoma County Water Agency (SWCA) uses six radial collector wells along the Russian River west of Santa Rosa, to provide water for several municipalities and water districts in north-western California. Three collector wells (1, 2, and 6) are located in the Wohler area, and three collector wells (3, 4, and 5) are located in the Mirabel area. The objective of this paper is to highlight the performance of the three collector wells located in the Mirabel area since their construction. The 2015 investigation showed a lower performance of Collectors 3 and 4 compared to their original performances after construction in 1975, while the performance of Collector 5 was relatively stable since 1982. The potential change in capacity could be due to the increase in encrustation observed during the visual inspection of laterals in all three collector wells. Overall, the three collectors are still within the optimal design parameters (screen entrance velocity \u3c 0.305 m min-1 and axial flow velocity of lateral screens \u3c 1.524 m s-1)

    Flow Analysis through Collector Well Laterals: A Case Study from Sonoma County Water Agency, California

    Get PDF
    The Sonoma County Water Agency (SWCA) uses six radial collector wells along the Russian River west of Santa Rosa, to provide water for several municipalities and water districts in north-western California. Three collector wells (1, 2, and 6) are located in the Wohler area, and three collector wells (3, 4, and 5) are located in the Mirabel area. The objective of this paper is to highlight the performance of the three collector wells located in the Mirabel area since their construction. The 2015 investigation showed a lower performance of Collectors 3 and 4 compared to their original performances after construction in 1975, while the performance of Collector 5 was relatively stable since 1982. The potential change in capacity could be due to the increase in encrustation observed during the visual inspection of laterals in all three collector wells. Overall, the three collectors are still within the optimal design parameters (screen entrance velocity \u3c 0.305 m min-1 and axial flow velocity of lateral screens \u3c 1.524 m s-1)

    Flow Analysis through CollectorWell Laterals: A Case Study from Sonoma County Water Agency, California

    Get PDF
    The Sonoma County Water Agency (SWCA) uses six radial collector wells along the Russian River west of Santa Rosa, to provide water for several municipalities and water districts in north-western California. Three collector wells (1, 2, and 6) are located in the Wohler area, and three collector wells (3, 4, and 5) are located in the Mirabel area. The objective of this paper is to highlight the performance of the three collector wells located in the Mirabel area since their construction. The 2015 investigation showed a lower performance of Collectors 3 and 4 compared to their original performances after construction in 1975, while the performance of Collector 5 was relatively stable since 1982. The potential change in capacity could be due to the increase in encrustation observed during the visual inspection of laterals in all three collector wells. Overall, the three collectors are still within the optimal design parameters (screen entrance velocity \u3c 0.305 m min1 and axial flow velocity of lateral screens \u3c 1.524 m s1)

    Flow Analysis through Collector Well Laterals: A Case Study from Sonoma County Water Agency, California

    Get PDF
    The Sonoma County Water Agency (SWCA) uses six radial collector wells along the Russian River west of Santa Rosa, to provide water for several municipalities and water districts in north-western California. Three collector wells (1, 2, and 6) are located in the Wohler area, and three collector wells (3, 4, and 5) are located in the Mirabel area. The objective of this paper is to highlight the performance of the three collector wells located in the Mirabel area since their construction. The 2015 investigation showed a lower performance of Collectors 3 and 4 compared to their original performances after construction in 1975, while the performance of Collector 5 was relatively stable since 1982. The potential change in capacity could be due to the increase in encrustation observed during the visual inspection of laterals in all three collector wells. Overall, the three collectors are still within the optimal design parameters (screen entrance velocity \u3c 0.305 m min-1 and axial flow velocity of lateral screens \u3c 1.524 m s-1)

    Flow Analysis through Collector Well Laterals: A Case Study from Sonoma County Water Agency, California

    Get PDF
    The Sonoma County Water Agency (SWCA) uses six radial collector wells along the Russian River west of Santa Rosa, to provide water for several municipalities and water districts in north-western California. Three collector wells (1, 2, and 6) are located in the Wohler area, and three collector wells (3, 4, and 5) are located in the Mirabel area. The objective of this paper is to highlight the performance of the three collector wells located in the Mirabel area since their construction. The 2015 investigation showed a lower performance of Collectors 3 and 4 compared to their original performances after construction in 1975, while the performance of Collector 5 was relatively stable since 1982. The potential change in capacity could be due to the increase in encrustation observed during the visual inspection of laterals in all three collector wells. Overall, the three collectors are still within the optimal design parameters (screen entrance velocity < 0.305 m min−1 and axial flow velocity of lateral screens < 1.524 m s−1)
    corecore