21 research outputs found

    Solar-Driven Continuous CO<sub>2</sub> Reduction to CO and CH<sub>4</sub> using Heterogeneous Photothermal Catalysts:Recent Progress and Remaining Challenges

    Get PDF
    The urgent need to reduce the carbon dioxide level in the atmosphere and keep the effects of climate change manageable has brought the concept of carbon capture and utilization to the forefront of scientific research. Amongst the promising pathways for this conversion, sunlight-powered photothermal processes, synergistically using both thermal and non-thermal effects of light, have gained significant attention. Research in this field focuses both on the development of catalysts and continuous-flow photoreactors, which offer significant advantages over batch reactors, particularly for scale-up. Here, we focus on sunlight-driven photothermal conversion of CO2 to chemical feedstock CO and CH4 as synthetic fuel. This review provides an overview of the recent progress in the development of photothermal catalysts and continuous-flow photoreactors and outlines the remaining challenges in these areas. Furthermore, it provides insight in additional components required to complete photothermal reaction systems for continuous production (e. g., solar concentrators, sensors and artificial light sources). In addition, our review emphasizes the necessity of integrated collaboration between different research areas, like chemistry, material science, chemical engineering, and optics, to establish optimized systems and reach the full potential of this technology.</p

    Scale-Up of a Heterogeneous Photocatalytic Degradation Using a Photochemical Rotor–Stator Spinning Disk Reactor

    Get PDF
    Many chemical reactions contain heterogeneous reagents, products, byproducts, or catalysts, making their transposition from batch to continuous-flow processing challenging. Herein, we report the use of a photochemical rotor–stator spinning disk reactor (pRS-SDR) that can handle and scale solid-containing photochemical reaction conditions in flow. Its ability to handle slurries was showcased for the TiO2-mediated aerobic photodegradation of aqueous methylene blue. The use of a fast rotating disk imposes high shear forces on the multiphase reaction mixture, ensuring its homogenization, increasing the mass transfer, and improving the irradiation profile of the reaction mixture. The pRS-SDR performance was also compared to other lab-scale reactors in terms of water treated per reactor volume and light power input

    Relating reflex gain modulation in posture control to underlying neural network properties using a neuromusculoskeletal model

    Get PDF
    During posture control, reflexive feedback allows humans to efficiently compensate for unpredictable mechanical disturbances. Although reflexes are involuntary, humans can adapt their reflexive settings to the characteristics of the disturbances. Reflex modulation is commonly studied by determining reflex gains: a set of parameters that quantify the contributions of Ia, Ib and II afferents to mechanical joint behavior. Many mechanisms, like presynaptic inhibition and fusimotor drive, can account for reflex gain modulations. The goal of this study was to investigate the effects of underlying neural and sensory mechanisms on mechanical joint behavior. A neuromusculoskeletal model was built, in which a pair of muscles actuated a limb, while being controlled by a model of 2,298 spiking neurons in six pairs of spinal populations. Identical to experiments, the endpoint of the limb was disturbed with force perturbations. System identification was used to quantify the control behavior with reflex gains. A sensitivity analysis was then performed on the neuromusculoskeletal model, determining the influence of the neural, sensory and synaptic parameters on the joint dynamics. The results showed that the lumped reflex gains positively correlate to their most direct neural substrates: the velocity gain with Ia afferent velocity feedback, the positional gain with muscle stretch over II afferents and the force feedback gain with Ib afferent feedback. However, position feedback and force feedback gains show strong interactions with other neural and sensory properties. These results give important insights in the effects of neural properties on joint dynamics and in the identifiability of reflex gains in experiments

    Tizanidine does not affect the linear relation of stretch duration to the long latency M2 response of m. flexor carpi radialis

    Get PDF
    The long latency M2 electromyographic response of a suddenly stretched active muscle is stretch duration dependent of which the nature is unclear. We investigated the influence of the group II afferent blocker tizanidine on M2 response characteristics of the m. flexor carpi radialis (FCR). M2 response magnitude and eliciting probability in a group of subjects receiving 4 mg of tizanidine orally were found to be significantly depressed by tizanidine while tizanidine did not affect the significant linear relation of the M2 response to stretch duration. The effect of tizanidine on the M2 response of FCR is supportive of a group II afferent contribution to a compound response of which the stretch duration dependency originates from a different mechanism, e.g., rebound Ia firing

    High-yield identification of pathogenic NF1 variants by skin fibroblast transcriptome screening after apparently normal diagnostic DNA testing

    Get PDF
    Neurofibromatosis type 1 (NF1) is caused by inactivating mutations in NF1. Due to the size, complexity, and high mutation rate at the NF1 locus, the identification of causative variants can be challenging. To obtain a molecular diagnosis in 15 individuals meeting diagnostic criteria for NF1, we performed transcriptome analysis (RNA-seq) on RNA obtained from cultured skin fibroblasts. In each case, routine molecular DNA diagnostics had failed to identify a disease-causing variant in NF1. A pathogenic variant or abnormal mRNA splicing was identified in 13 cases: 6 deep intronic variants and 2 transposon insertions causing noncanonical splicing, 3 postzygotic changes, 1 branch point mutation and, in 1 case, abnormal splicing for which the responsible DNA change remains to be identified. These findings helped resolve the molecular findings for an additional 17 individuals in multiple families with NF1, demonstrating the utility of skin-fibroblast-based transcriptome analysis for molecular diagnostics. RNA-seq improves mutation detection in NF1 and provides a powerful complementary approach to DNA-based methods. Importantly, our approach is applicable to other genetic disorders, particularly those caused by a wide variety of variants in a limited number of genes and specifically for individuals in whom routine molecular DNA diagnostics did not identify the causative variant.</p

    Analysis of reflex modulation with a biologically realistic neural network

    Get PDF
    In this study, a neuromusculoskeletal model was built to give insight into the mechanisms behind the modulation of reflexive feedback strength as experimentally identified in the human shoulder joint. The model is an integration of a biologically realistic neural network consisting of motoneurons and interneurons, modeling 12 populations of spinal neurons, and a one degree-of-freedom musculoskeletal model, including proprioceptors. The model could mimic the findings of human postural experiments, using presynaptic inhibition of the Ia afferents to modulate the feedback gains. In a pathological case, disabling one specific neural connection between the inhibitory interneurons and the motoneurons could mimic the experimental findings in complex regional pain syndrome patients. It is concluded that the model is a valuable tool to gain insight into the spinal contributions to human motor control. Applications lay in the fields of human motor control and neurological disorders, where hypotheses on motor dysfunction can be tested, like spasticity, clonus, and tremor

    Diel variation in gene expression of the CO2-concentrating mechanism during a harmful cyanobacterial bloom

    Get PDF
    Dense phytoplankton blooms in eutrophic waters often experience large daily fluctuations in environmental conditions. We investigated how this diel variation affects in situ gene expression of the CO2-concentrating mechanism (CCM) and other selected genes of the harmful cyanobacterium Microcystis aeruginosa. Photosynthetic activity of the cyanobacterial bloom depleted the dissolved CO2 concentration, raised pH to 10, and caused large diel fluctuations in the bicarbonate and O2 concentration. The Microcystis population consisted of three Ci uptake genotypes that differed in the presence of the low-affinity and high-affinity bicarbonate uptake genes bicA and sbtA. Expression of the bicarbonate uptake genes bicA, sbtA and cmpA (encoding a subunit of the high-affinity bicarbonate uptake system BCT1), the CCM transcriptional regulator gene ccmR and the photoprotection gene flv4 increased at first daylight and was negatively correlated with the bicarbonate concentration. In contrast, genes of the two CO2 uptake systems were constitutively expressed, whereas expression of the RuBisCO chaperone gene rbcX, the carboxysome gene ccmM, and the photoprotection gene isiA was highest at night and down-regulated during daytime. In total, our results show that the harmful cyanobacterium Microcystis is very responsive to the large diel variations in carbon and light availability often encountered in dense cyanobacterial blooms

    Combatting cyanobacteria with hydrogen peroxide: a laboratory study on the consequences for phytoplankton community and diversity

    No full text
    Experiments with different phytoplankton densities in lake samples showed that a high biomass increases the rate of HP degradation and decreases the effectiveness of hydrogen peroxide (HP) in the selective suppression of dominant cyanobacteria. Selective application of HP requires usage of low doses only, accordingly this defines the limits for use in lake mitigation. To acquire insight into the impact of HP on other phytoplankton species, we have followed the succession of three phytoplankton groups in lake samples that were treated with different concentrations of HP using a taxa-specific fluorescence emission test. This fast assay reports relatively well on coarse changes in the phytoplankton community, the measured data and the counts from microscopical analysis of the phytoplankton match quite well. The test was used to pursuit HP application in a Planktothrix agardhii-dominated lake sample and displayed a promising shift in the phytoplankton community in only a few weeks. From a low diversity community, a change to a status with a significantly higher diversity and increased abundance of eukaryotic phytoplankton species was established. Re-inoculation experiments of treated samples with original P. agardhii-rich lake water demonstrated prolonged absence of cyanobacteria, and displayed a remarkable stability of the newly developed post-HP treatment state of the phytoplankton community

    Scale-Up of a Heterogeneous Photocatalytic Degradation Using a Photochemical Rotor–Stator Spinning Disk Reactor

    Get PDF
    Many chemical reactions contain heterogeneous reagents, products, byproducts, or catalysts, making their transposition from batch to continuous-flow processing challenging. Herein, we report the use of a photochemical rotor–stator spinning disk reactor (pRS-SDR) that can handle and scale solid-containing photochemical reaction conditions in flow. Its ability to handle slurries was showcased for the TiO2-mediated aerobic photodegradation of aqueous methylene blue. The use of a fast rotating disk imposes high shear forces on the multiphase reaction mixture, ensuring its homogenization, increasing the mass transfer, and improving the irradiation profile of the reaction mixture. The pRS-SDR performance was also compared to other lab-scale reactors in terms of water treated per reactor volume and light power input
    corecore