761 research outputs found

    The Markov-Dubins Problem with Free Terminal Direction in a Nonpositively Curved Cube Complex

    Get PDF
    State complexes are nonpositively curved cube complexes that model the state spaces of reconfigurable systems. The problem of determining a strategy for reconfiguring the system from a given initial state to a given goal state is equivalent to that of finding a path between two points in the state complex. The additional requirement that allowable paths must have a prescribed initial direction and minimal turning radius determines a Markov-Dubins problem with free terminal direction (MDPFTD). Given a nonpositively curved, locally finite cube complex X, we consider the set of unit-speed paths which satisfy a certain smoothness condition in addition to the boundary conditions and curvature constraint that define a MDPFTD. We show that this set either contains a path of minimal length, or is empty. We then focus on the case that X is a surface with a nonpositively curved cubical structure. We show that any solution to a MDPFTD in X must consist of finitely many geodesic segments and arcs of constant curvature, and we give an algorithm for determining those solutions to the MDPFTD in X which are CL paths, that is, made up of an arc of constant curvature followed by a geodesic segment. Finally, under the assumption that the 1-skeleton of X is d-regular, we give sufficient conditions for a topological ray in X of constant curvature to be a rose curve or a proper ray

    Differentiated, promoter-specific response of [4Fe-4S] NsrR DNA-binding to reaction with nitric oxide

    Get PDF
    NsrR is an iron-sulfur cluster protein that regulates the nitric oxide (NO) stress response of many bacteria. NsrR from Streptomyces coelicolor regulates its own expression and that of only two other genes, hmpA1 and hmpA2, which encode HmpA enzymes predicted to detoxify NO. NsrR binds promoter DNA with high affinity only when coordinating a [4Fe-4S] cluster. Here we show that reaction of [4Fe-4S] NsrR with NO affects DNA-binding differently depending on the gene promoter. Binding to the hmpA2 promoter was abolished at ~2 NO per cluster, while for the hmpA1 and nsrR promoters, ~4 and ~8 NO molecules, respectively, were required to abolish DNA binding. Spectroscopic and kinetic studies of the NO reaction revealed a rapid, multi-phase, non-concerted process involving up to 8 – 10 NO molecules per cluster, leading to the formation of several iron-nitrosyl species. A distinct intermediate was observed at ~2 NO per cluster, along with two further intermediates at ~4 and ~6 NO. The NsrR nitrosylation reaction was not significantly affected by DNA-binding. These results show that NsrR regulates different promoters in response to different concentrations of NO. Spectroscopic evidence indicates that this is achieved by different NO-FeS complexes

    Toward Interactive Dictation

    Full text link
    Voice dictation is an increasingly important text input modality. Existing systems that allow both dictation and editing-by-voice restrict their command language to flat templates invoked by trigger words. In this work, we study the feasibility of allowing users to interrupt their dictation with spoken editing commands in open-ended natural language. We introduce a new task and dataset, TERTiUS, to experiment with such systems. To support this flexibility in real-time, a system must incrementally segment and classify spans of speech as either dictation or command, and interpret the spans that are commands. We experiment with using large pre-trained language models to predict the edited text, or alternatively, to predict a small text-editing program. Experiments show a natural trade-off between model accuracy and latency: a smaller model achieves 30% end-state accuracy with 1.3 seconds of latency, while a larger model achieves 55% end-state accuracy with 7 seconds of latency.Comment: 17 pages, 5 tables, 4 figures; AC

    Mass spectrometric identification of intermediates in the O2-driven [4Fe-4S] to [2Fe-2S] cluster conversion in FNR

    Get PDF
    The iron-sulfur cluster containing protein FNR is the master regulator for the switch between anaerobic and aerobic respiration in Escherichia coli and many other bacteria. The [4Fe-4S] cluster functions as the sensory module, undergoing reaction with O2 that leads to conversion to a [2Fe-2S] form with loss of high affinity DNA-binding. Here we report studies of the FNR cluster conversion reaction using time-resolved electrospray ionization mass spectrometry. The data provide new insight into the reaction, permitting the detection of cluster conversion intermediates and products, including a novel [3Fe-3S] cluster and persulfide coordinated [2Fe-2S] clusters ([2Fe-2S](S)n, where n = 1 or 2). Analysis of kinetic data revealed a branched mechanism in which cluster sulfide oxidation occurs in parallel with cluster conversion, and not as a subsequent, secondary reaction, to generate ([2Fe-2S](S)n species. This methodology shows great potential for broad application to studies of protein cofactorsmall molecule interactions

    Recovery of massless Dirac fermions at charge neutrality in strongly interacting twisted bilayer graphene with disorder

    Get PDF
    Stacking two graphene layers twisted by the 'magic angle' θ≈1.1∘ generates flat energy bands, which in turn catalyzes various strongly correlated phenomena depending on filling and sample details. At charge neutrality, transport measurements reveal superficially mundane semimetallicity (as expected when correlations are weak) in some samples yet robust insulation in others. We propose that the interplay between interactions and disorder admits either behavior, even when the system is strongly correlated and locally gapped. Specifically, we argue that strong interactions supplemented by weak, smooth disorder stabilize a network of gapped quantum valley Hall domains with spatially varying Chern numbers determined by the disorder landscape--even when an entirely different order is favored in the clean limit. Within this scenario, sufficiently small samples that realize a single domain display insulating transport characteristics. Conversely, multi-domain samples exhibit re-emergent massless Dirac fermions formed by gapless domain-wall modes, yielding semimetallic behavior except on the ultra-long scales at which localization becomes visible. We discuss experimental tests of this proposal via local probes and transport. Our results highlight the crucial role that randomness can play in ground-state selection of twisted heterostructures, an observation that we expect to have further ramifications at other fillings

    Andreev reflection spectroscopy in strongly paired superconductors

    Full text link
    Motivated by recent experiments on low-carrier-density superconductors, including twisted multilayer graphene, we study signatures of the BCS to BEC evolution in Andreev reflection spectroscopy. We establish that in a standard quantum point contact geometry, Andreev reflection in a BEC superconductor is unable to mediate a zero-bias conductance beyond e2/he^2/h per lead channel. This bound is shown to result from a duality that links the sub-gap conductance of BCS and BEC superconductors. We then demonstrate that sharp signatures of BEC superconductivity, including perfect Andreev reflection, can be recovered by tunneling through a suitably designed potential well. We propose various tunneling spectroscopy setups to experimentally probe this recovery.Comment: 13 pages, 8 figure
    • …
    corecore