3,677 research outputs found
The \^G Search for Extraterrestrial Civilizations with Large Energy Supplies. IV. The Signatures and Information Content of Transiting Megastructures
Arnold (2005), Forgan (2013), and Korpela et al. (2015) noted that
planet-sized artificial structures could be discovered with Kepler as they
transit their host star. We present a general discussion of transiting
megastructures, and enumerate ten potential ways their anomalous silhouettes,
orbits, and transmission properties would distinguish them from exoplanets. We
also enumerate the natural sources of such signatures.
Several anomalous objects, such as KIC 12557548 and CoRoT-29, have
variability in depth consistent with Arnold's prediction and/or an asymmetric
shape consistent with Forgan's model. Since well motivated physical models have
so far provided natural explanations for these signals, the ETI hypothesis is
not warranted for these objects, but they still serve as useful examples of how
nonstandard transit signatures might be identified and interpreted in a SETI
context. Boyajian et al. 2015 recently announced KIC 8462852, an object with a
bizarre light curve consistent with a "swarm" of megastructures. We suggest
this is an outstanding SETI target.
We develop the normalized information content statistic to quantify the
information content in a signal embedded in a discrete series of bounded
measurements, such as variable transit depths, and show that it can be used to
distinguish among constant sources, interstellar beacons, and naturally
stochastic or artificial, information-rich signals. We apply this formalism to
KIC 12557548 and a specific form of beacon suggested by Arnold to illustrate
its utility.Comment: 25 pages, 10 figures. Accepted to Ap
An Empirically Derived Three-Dimensional Laplace Resonance in the Gliese 876 Planetary System
We report constraints on the three-dimensional orbital architecture for all
four planets known to orbit the nearby M dwarf Gliese 876 based solely on
Doppler measurements and demanding long-term orbital stability. Our dataset
incorporates publicly available radial velocities taken with the ELODIE and
CORALIE spectrographs, HARPS, and Keck HIRES as well as previously unpublished
HIRES velocities. We first quantitatively assess the validity of the planets
thought to orbit GJ 876 by computing the Bayes factors for a variety of
different coplanar models using an importance sampling algorithm. We find that
a four-planet model is preferred over a three-planet model. Next, we apply a
Newtonian MCMC algorithm to perform a Bayesian analysis of the planet masses
and orbits using an n-body model in three-dimensional space. Based on the
radial velocities alone, we find that a 99% credible interval provides upper
limits on the mutual inclinations for the three resonant planets
( for the "c" and "b" pair and for
the "b" and "e" pair). Subsequent dynamical integrations of our posterior
sample find that the GJ 876 planets must be roughly coplanar
( and ), suggesting the amount of
planet-planet scattering in the system has been low. We investigate the
distribution of the respective resonant arguments of each planet pair and find
that at least one argument for each planet pair and the Laplace argument
librate. The libration amplitudes in our three-dimensional orbital model
supports the idea of the outer-three planets having undergone significant past
disk migration.Comment: 19 pages, 11 figures, 8 tables. Accepted to MNRAS. Posterior samples
available at https://github.com/benelson/GJ87
The California Planet Survey IV: A Planet Orbiting the Giant Star HD 145934 and Updates to Seven Systems with Long-Period Planets
We present an update to seven stars with long-period planets or planetary
candidates using new and archival radial velocities from Keck-HIRES and
literature velocities from other telescopes. Our updated analysis better
constrains orbital parameters for these planets, four of which are known
multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with
circular orbits and periods longer than 8 yr. We present a previously unseen
linear trend in the residuals of HD 66428 indicative on an additional planetary
companion. We confirm that GJ 849 is a multi-planet system and find a good
orbital solution for the c component: it is a planet in a 15 yr
orbit (the longest known for a planet orbiting an M dwarf). We update the HD
74156 double-planet system. We also announce the detection of HD 145934 b, a planet in a 7.5 yr orbit around a giant star. Two of our stars, HD
187123 and HD 217107, at present host the only known examples of systems
comprising a hot Jupiter and a planet with a well constrained period yr,
and with no evidence of giant planets in between. Our enlargement and
improvement of long-period planet parameters will aid future analysis of
origins, diversity, and evolution of planetary systems.Comment: 16 pages, 13 figures. Accepted for publication in Ap
The 55 Cancri Planetary System: Fully Self-Consistent N-body Constraints and a Dynamical Analysis
We present an updated study of the planets known to orbit 55 Cancri A using
1,418 high-precision radial velocity observations from four observatories
(Lick, Keck, Hobby-Eberly Telescope, Harlan J. Smith Telescope) and transit
time/durations for the inner-most planet, 55 Cancri "e" (Winn et al. 2011). We
provide the first posterior sample for the masses and orbital parameters based
on self-consistent n-body orbital solutions for the 55 Cancri planets, all of
which are dynamically stable (for at least years). We apply a GPU
version of Radial velocity Using N-body Differential evolution Markov Chain
Monte Carlo (RUN DMC; B. Nelson et al. 2014) to perform a Bayesian analysis of
the radial velocity and transit observations. Each of the planets in this
remarkable system has unique characteristics. Our investigation of high-cadence
radial velocities and priors based on space-based photometry yields an updated
mass estimate for planet "e" ( M), which affects its
density ( g cm) and inferred bulk composition.
Dynamical stability dictates that the orbital plane of planet "e" must be
aligned to within of the orbital plane of the outer planets (which we
assume to be coplanar). The mutual interactions between the planets "b" and "c"
may develop an apsidal lock about . We find 36-45% of all our model
systems librate about the anti-aligned configuration with an amplitude of
. Other cases showed short-term perturbations in the
libration of , circulation, and nodding, but we find the
planets are not in a 3:1 mean-motion resonance. A revised orbital period and
eccentricity for planet "d" pushes it further toward the closest known Jupiter
analog in the exoplanet population.Comment: 12 pages, 5 figures, 4 tables, accepted to MNRAS. Figure 2 (left) is
updated from published version. Posterior samples available at
http://www.personal.psu.edu/ben125/Downloads.htm
A New Planet Around an M Dwarf: Revealing a Correlation Between Exoplanets and Stellar Mass
We report precise Doppler measurements of GJ317 (M3.5V) that reveal the
presence of a planet with a minimum mass Msini = 1.2 Mjup in an eccentric,
692.9 day orbit. GJ317 is only the third M dwarf with a Doppler-detected Jovian
planet. The residuals to a single-Keplerian fit show evidence of a possible
second orbital companion. The inclusion of an additional Jupiter-mass planet (P
= 2700 days, Msini = 0.83 Mjup) improves the quality of fit significantly,
reducing the rms from 12.5 m/s to 6.32 m/s. A false-alarm test yields a 1.1%
probability that the curvature in the residuals of the single-planet fit is due
to random fluctuations, lending additional credibility to the two-planet model.
However, our data only marginally constrain a two-planet fit and further
monitoring is necessary to fully characterize the properties of the second
planet. To study the effect of stellar mass on Jovian planet occurrence we
combine our samples of M stars, Solar-mass dwarfs and intermediate-mass
subgiants. We find a positive correlation between stellar mass and the
occurrence rate of Jovian planets within 2.5 AU; the former A-type stars in our
sample are nearly 5 times more likely than the M dwarfs to harbor a giant
planet. Our analysis shows that the correlation between Jovian planet
occurrence and stellar mass remains even after accounting for the effects of
stellar metallicity.Comment: ApJ accepted, 27 pages, 6 figures, 3 table
Limits on Stellar Companions to Exoplanet Host Stars With Eccentric Planets
Though there are now many hundreds of confirmed exoplanets known, the
binarity of exoplanet host stars is not well understood. This is particularly
true of host stars which harbor a giant planet in a highly eccentric orbit
since these are more likely to have had a dramatic dynamical history which
transferred angular momentum to the planet. Here we present observations of
four exoplanet host stars which utilize the excellent resolving power of the
Differential Speckle Survey Instrument (DSSI) on the Gemini North telescope.
Two of the stars are giants and two are dwarfs. Each star is host to a giant
planet with an orbital eccentricity > 0.5 and whose radial velocity data
contain a trend in the residuals to the Keplerian orbit fit. These observations
rule out stellar companions 4-8 magnitudes fainter than the host star at
passbands of 692nm and 880nm. The resolution and field-of-view of the
instrument result in exclusion radii of 0.05-1.4 arcsecs which excludes stellar
companions within several AU of the host star in most cases. We further provide
new radial velocities for the HD 4203 system which confirm that the linear
trend previously observed in the residuals is due to an additional planet.
These results place dynamical constraints on the source of the planet's
eccentricities, constraints on additional planetary companions, and informs the
known distribution of multiplicity amongst exoplanet host stars.Comment: 10 pages, 7 figures, 2 tables, accepted to Ap
Five Intermediate-Period Planets from the N2K Sample
We report the detection of five Jovian mass planets orbiting high metallicity
stars. Four of these stars were first observed as part of the N2K program and
exhibited low RMS velocity scatter after three consecutive observations.
However, follow-up observations over the last three years now reveal the
presence of longer period planets with orbital periods ranging from 21 days to
a few years. HD 11506 is a G0V star with a planet of \msini = 4.74 \mjup in a
3.85 year orbit. HD 17156 is a G0V star with a 3.12 \mjup planet in a 21.2 day
orbit. The eccentricity of this orbit is 0.67, one of the highest known for a
planet with a relatively short period. The orbital period for this planet
places it in a region of parameter space where relatively few planets have been
detected. HD 125612 is a G3V star with a planet of \msini = 3.5 \mjup in a 1.4
year orbit. HD 170469 is a G5IV star with a planet of \msini = 0.67 \mjup in a
3.13 year orbit. HD 231701 is an F8V star with planet of 1.08 \mjup in a 142
day orbit. All of these stars have supersolar metallicity. Three of the five
stars were observed photometrically but showed no evidence of brightness
variability. A transit search conducted for HD 17156 was negative but covered
only 25% of the search space and so is not conclusive.Comment: 13 pages, 9 figures, accepted ApJ Resubmitted here with some
additional data, modified Keplerian orbit
KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396
We report the discovery of a transiting exoplanet, KELT-11b, orbiting the
bright () subgiant HD 93396. A global analysis of the system shows that
the host star is an evolved subgiant star with K,
, , log , and [Fe/H].
The planet is a low-mass gas giant in a day orbit,
with , , g cm, surface gravity log , and equilibrium temperature K. KELT-11 is the brightest known transiting exoplanet host
in the southern hemisphere by more than a magnitude, and is the 6th brightest
transit host to date. The planet is one of the most inflated planets known,
with an exceptionally large atmospheric scale height (2763 km), and an
associated size of the expected atmospheric transmission signal of 5.6%. These
attributes make the KELT-11 system a valuable target for follow-up and
atmospheric characterization, and it promises to become one of the benchmark
systems for the study of inflated exoplanets.Comment: 15 pages, Submitted to AAS Journal
Recommended from our members
Application of multiplexed ion mobility spectrometry towards the identification of host protein signatures of treatment effect in pulmonary tuberculosis.
RationaleThe monitoring of TB treatments in clinical practice and clinical trials relies on traditional sputum-based culture status indicators at specific time points. Accurate, predictive, blood-based protein markers would provide a simpler and more informative view of patient health and response to treatment.ObjectiveWe utilized sensitive, high throughput multiplexed ion mobility-mass spectrometry (IM-MS) to characterize the serum proteome of TB patients at the start of and at 8 weeks of rifamycin-based treatment. We sought to identify treatment specific signatures within patients as well as correlate the proteome signatures to various clinical markers of treatment efficacy.MethodsSerum samples were collected from 289 subjects enrolled in CDC TB Trials Consortium Study 29 at time of enrollment and at the end of the intensive phase (after 40 doses of TB treatment). Serum proteins were immunoaffinity-depleted of high abundant components, digested to peptides and analyzed for data acquisition utilizing a unique liquid chromatography IM-MS platform (LC-IM-MS). Linear mixed models were utilized to identify serum protein changes in the host response to antibiotic treatment as well as correlations with culture status end points.ResultsA total of 10,137 peptides corresponding to 872 proteins were identified, quantified, and used for statistical analysis across the longitudinal patient cohort. In response to TB treatment, 244 proteins were significantly altered. Pathway/network comparisons helped visualize the interconnected proteins, identifying up regulated (lipid transport, coagulation cascade, endopeptidase activity) and down regulated (acute phase) processes and pathways in addition to other cross regulated networks (inflammation, cell adhesion, extracellular matrix). Detection of possible lung injury serum proteins such as HPSE, significantly downregulated upon treatment. Analyses of microbiologic data over time identified a core set of serum proteins (TTHY, AFAM, CRP, RET4, SAA1, PGRP2) which change in response to treatment and also strongly correlate with culture status. A similar set of proteins at baseline were found to be predictive of week 6 and 8 culture status.ConclusionA comprehensive host serum protein dataset reflective of TB treatment effect is defined. A repeating set of serum proteins (TTHY, AFAM, CRP, RET4, SAA1, PGRP2, among others) were found to change significantly in response to treatment, to strongly correlate with culture status, and at baseline to be predictive of future culture conversion. If validated in cohorts with long term follow-up to capture failure and relapse of TB, these protein markers could be developed for monitoring of treatment in clinical trials and in patient care
- …
