52 research outputs found

    The Rise of Artificial Intelligence: An Analysis on the Future of Accountancy

    Get PDF
    The concern for the replacement of accountants with an artificial intelligence system is a current and pressing issue. As new certified public accountants enter the field, they must adapt to the rapid changes and innovations of today. This thesis will exam ine and analyze how the accounting industry has been impacted by artificial intelligence, as well as potential threats to new hires. Ultimately, accountants should not fear replacement, but rather must tailor their abilities to the newest technologies. Ove rall, artificial intelligence will add value to the accounting industry, as certified public accountants can shift their attention from monotonous tasks towards making more analytic and data - driven decisions

    Maturation of neuron types in nucleus of solitary tract associated with functional convergence during development of taste circuits

    Full text link
    Late fetal through postnatal development in sheep is a period of increasing convergence of afferent taste fibers onto second-order neurons in the nucleus of the solitary tract (NST). To learn whether neuron morphology alters in concert with convergence and neurophysiological development in NST, three-dimensional neuron reconstructions were made of cells in a functionally defined region of gustatory NST from Golgi preparations of the brainstem. Elongate, multipolar, and ovoid neurons were studied in fetuses from 85 days of gestation through the perinatal period (term = 147 days of gestation), to postnatal stages. Somal size and form, and dendritic complexity and extent, increased markedly from 85 to about 110 days of gestation in both of the proposed NST projection neurons, elongate and multipolar. From 130 days of gestation to postnatal ages, growth of dendrites of elongate neurons plateaued or declined, whereas dendrites of multipolar neurons apparently continued to increase in size and extent. In addition, spine density decreased on elongate neurons but remained stable on multipolar neurons. Morphological variables of ovoid cells, proposed interneurons in NST, did not alter over this later period. The data suggest that multipolar, not elongate or ovoid, neurons are logical candidates to receive the increasing afferent fiber input onto NST cells during late gestation. Also, neural activity from taste afferent fibers is more likely to have a role in altering NST neuron morphology at later, rather than earlier, developmental periods. © 1994 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50062/1/903450304_ftp.pd

    Disease-Toxicant Interactions in Manganese Exposed Huntington Disease Mice: Early Changes in Striatal Neuron Morphology and Dopamine Metabolism

    Get PDF
    YAC128 Huntington's disease (HD) transgenic mice accumulate less manganese (Mn) in the striatum relative to wild-type (WT) littermates. We hypothesized that Mn and mutant Huntingtin (HTT) would exhibit gene-environment interactions at the level of neurochemistry and neuronal morphology. Twelve-week-old WT and YAC128 mice were exposed to MnCl2-4H2O (50 mg/kg) on days 0, 3 and 6. Striatal medium spiny neuron (MSN) morphology, as well as levels of dopamine (DA) and its metabolites (which are known to be sensitive to Mn-exposure), were analyzed at 13 weeks (7 days from initial exposure) and 16 weeks (28 days from initial exposure). No genotype-dependent differences in MSN morphology were apparent at 13 weeks. But at 16 weeks, a genotype effect was observed in YAC128 mice, manifested by an absence of the wild-type age-dependent increase in dendritic length and branching complexity. In addition, genotype-exposure interaction effects were observed for dendritic complexity measures as a function of distance from the soma, where only YAC128 mice were sensitive to Mn exposure. Furthermore, striatal DA levels were unaltered at 13 weeks by genotype or Mn exposure, but at 16 weeks, both Mn exposure and the HD genotype were associated with quantitatively similar reductions in DA and its metabolites. Interestingly, Mn exposure of YAC128 mice did not further decrease DA or its metabolites versus YAC128 vehicle exposed or Mn exposed WT mice. Taken together, these results demonstrate Mn-HD disease-toxicant interactions at the onset of striatal dendritic neuropathology in YAC128 mice. Our results identify the earliest pathological change in striatum of YAC128 mice as being between 13 to 16 weeks. Finally, we show that mutant HTT suppresses some Mn-dependent changes, such as decreased DA levels, while it exacerbates others, such as dendritic pathology

    RETINOIC ACID SIGNALING AND TRANSMURAL PRESSURE IN MOUSE LUNG DEVELOPMENT

    No full text
    During development, the mammalian lung undergoes several rounds of branching, the rate of which is tuned by the pressure of the fluid within the lumen of the lung. In this dissertation, we carried out bioinformatics analysis of RNA-sequencing of embryonic mouse lungs cultured under physiologic or sub-physiologic transmural pressure and identified transcription-factor binding motifs near genes whose expression changes in response to pressure. Surprisingly, we found retinoic acid (RA) receptor binding sites significantly overrepresented in the promoters and enhancers of pressure-responsive genes. Consistently, increasing luminal pressure activates RA signaling, and pharmacologically inhibiting RA signaling decreases airway epithelial branching and smooth muscle wrapping. Using both pharmacological and transgenic approaches, we found that pressure activates RA signaling through the mechanosensor Yap. Using a computational mechanical model we predicted that mechanical signaling through Yap and RA affects lung development by altering the balance between epithelial proliferation and smooth muscle wrapping around epithelial branches. We further predicted that increasing the rate of epithelial proliferation relative to smooth muscle differentiation would lead to dilated epithelial branches, which we confirmed experimentally. Finally, we found that in lungs from epithelial Yap knockout embryos, there is decreased smooth muscle wrapping relative to the rate of epithelial proliferation, suggesting that decreased smooth muscle differentiation downstream of disrupted RA signaling in these lungs is responsible for the dilated epithelial branches in these lungs. Our results show that transmural pressure signals through RA to balance the relative rates of epithelial growth and smooth muscle differentiation in the developing mouse lung and identify RA as a novel component in the mechanotransduction machinery of embryonic tissues

    Optical systems for point-of-care diagnostic instrumentation: analysis of imaging performance and cost

    No full text
    One of the key elements in point-of-care (POC) diagnostic test instrumentation is the optical system required for signal detection and / or imaging. Many tests which use fluorescence, absorbance, or colorimetric optical signals are under development for management of infectious diseases in resource limited settings, where the overall size and cost of the device is of critical importance. At present, high-performance lenses are expensive to fabricate and difficult to obtain commercially, presenting barriers for developers of in vitro POC tests or microscopic image-based diagnostics. We recently described a compact “hybrid” objective lens incorporating both glass and plastic optical elements, with a numerical aperture of 1.0 and field-of-view of 250 μm. This design concept may potentially enable mass-production of high-performance, low-cost optical systems which can be easily incorporated in the readout path of existing and emerging POC diagnostic assays. In this paper, we evaluate the biological imaging performance of these lens systems in three broad POC diagnostic application areas; (1) bright field microscopy of histopathology slides, (2) cytologic examination of blood smears, and (3) immunofluorescence imaging. We also break down the fabrication costs and draw comparisons with other miniature optical systems. The hybrid lenses provided images with quality comparable to conventional microscopy, enabling examination of neoplastic pathology and infectious parasites including malaria and cryptosporidium. We describe how these components can be produced at below $10 per unit in full-scale production quantities, making these systems well suited for use within POC diagnostic instrumentation

    An integrated network analysis reveals that nitric oxide reductase prevents metabolic cycling of nitric oxide by Pseudomonas aeruginosa

    No full text
    Nitric oxide (NO) is a chemical weapon within the arsenal of immune cells, but is also generated endogenously by different bacteria. Pseudomonas aeruginosa are pathogens that contain an NO-generating nitrite (NO2 ) reductase (NirS), and NO has been shown to influence their virulence. Interestingly, P. aeruginosa also contain NO dioxygenase (Fhp) and nitrate (NO3 (-)) reductases, which together with NirS provide the potential for NO to be metabolically cycled (NO -> NO3 (-)-> NO2 (-)-> NO). Deeper understanding of NO metabolism in P. aeruginosa will increase knowledge of its pathogenesis, and computational models have proven to be useful tools for the quantitative dissection of NO biochemical networks. Here we developed such a model for P. aeruginosa and confirmed its predictive accuracy with measurements of NO, O-2, NO2 (-), and NO3 (-) in mutant cultures devoid of Fhp or NorCB (NO reductase) activity. Using the model, we assessed whether NO was metabolically cycled in aerobic P. aeruginosa cultures. Calculated fluxes indicated a bottleneck at NO3 (-), which was relieved upon O-2 depletion. As cell growth depleted dissolved O-2 levels, NO3 (-) was converted to NO2 (-) at near-stoichiometric levels, whereas NO2 (-) consumption did not coincide with NO or NO3 (-) accumulation. Assimilatory NO2 reductase (NirBD) or NorCB activity could have prevented NO cycling, and experiments with Delta nirB,Delta nirS, and Delta norC showed that NorCB was responsible for loss of flux from the cycle. Collectively, this work provides a computational tool to analyze NO metabolism in P. aeruginosa, and establishes that P. aeruginosa use NorCB to prevent metabolic cycling of NO

    Two classes of vesicles are present and change in relative proportion during post‐embryonic development of rectifying electrical synapses in the crayfish

    No full text
    The size and shape of vesicles at junctional appositions of the rectifying electrical synapses between the medial giant fibre and motor giant neurone of the crayfish were measured during the first 2 months after hatching. Summed data over this period reveal a bimodal distribution in vesicle diameter. From the day of hatching until about 7 days of age, small vesicles (circa 25 nm diameter) predominate. From day 7 onwards, larger vesicles (circa 55 nm diameter) occur in increasing numbers, until at day 56 they constitute about 85% of the population at any one junctional apposition. At intermediate ages (day 7–28) individual junctional appositions may show the same bimodal distribution in size as does the age group as a whole, indicating that large and small vesicles occur together at the same junction. The larger vesicles are mainly circular, while the small vesicles are pleomorphic, with shapes ranging from almost circular down to a shape factor of about 0.6. © 1992 Wiley‐Liss, Inc.</p
    corecore