7 research outputs found

    Postsynthetic treatment of nickel–iron layered double hydroxides for the optimum catalysis of the oxygen evolution reaction

    Get PDF
    D.T., S.J., J.C., and V.N. wish to thank the support of the ERC CoG, 3D2DPring (GA 681544) and PoC Powering_eTextiles (GA 861673) and SFI AMBER (12/RC/2278_P2). The authors would like to thank the Advanced Microscopy Lab and CRANN Trinity College Dublin for providing STEM-EDX measurements. This publication has emanated from research supported in part by a grant from Science Foundation Ireland under Grant number 12/RC/2278_P2. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. Publisher Copyright: © 2021, The Author(s).Nickel–iron-layered double hydroxide (NiFe LDH) platelets with high morphological regularity and submicrometre lateral dimensions were synthesized using a homogeneous precipitation technique for highly efficient catalysis of the oxygen evolution reaction (OER). Considering edge sites are the point of activity, efforts were made to control platelet size within the synthesized dispersions. The goal is to controllably isolate and characterize size-reduced NiFe LDH particles. Synthetic approaches for size control of NiFe LDH platelets have not been transferable based on published work with other LDH materials and for that reason, we instead use postsynthetic treatment techniques to improve edge-site density. In the end, size-reduced NiFe LDH/single-wall carbon nanotube (SWCNT) composites allowed to further reduce the OER overpotential to 237 ± 7 mV ( = 0.16 ± 0.01 μm, 20 wt% SWCNT), which is one of the best values reported to date. This approach as well improved the long-term activity of the catalyst in operating conditions.publishersversionpublishe

    Adsorption of n-alkanes in ZIF-8: Influence of crystal size and framework dynamics

    No full text
    Due to its exceptional chemical and thermal stability, ZIF-8 is one of the most promising representatives of nanoporous metal-organic frameworks. In this work, we investigate adsorption properties of this material both experimentally and theoretically. The experiments were carried out on 8 preparations differing in morphology of the crystals. Adsorption was studied in isothermal approach exploiting standard adsorbates, such as N2 or CO2, as well as in isobaric regime with C5–C9 linear alkanes. The latter were performed with the novel quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA) technique showing that a complexity of n-alkanes adsorption mechanism in ZIF-8 depends on the nature of adsorbate. Unexpectedly, for adsorption of C7–C9 n-alkanes a two-step process was found. QE-TPDA yielded high quality adsorption isobars which were successfully reproduced by Grand-Canonical Monte Carlo molecular simulations. The calculations showed that the specific adsorption behaviour of ZIF-8 is due to the fact that its structure undergoes conformational changes in order to adapt to the guest molecules. QE-TPDA measurements with n-nonane were performed at conditions close to saturation of the adsorbate. This allowed to observe surface-related adsorption on the ZIF-8 crystals, which was correlated with their size.</p

    Adsorption of n-alkanes in ZIF-8 : influence of crystal size and framework dynamics

    No full text
    Due to its exceptional chemical and thermal stability, ZIF-8 is one of the most promising representatives of nanoporous metal-organic frameworks. In this work, we investigate adsorption properties of this material both experimentally and theoretically. The experiments were carried out on 8 preparations differing in morphology of the crystals. Adsorption was studied in isothermal approach exploiting standard adsorbates, such as N2 or CO2, as well as in isobaric regime with C5–C9 linear alkanes. The latter were performed with the novel quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA) technique showing that a complexity of n-alkanes adsorption mechanism in ZIF-8 depends on the nature of adsorbate. Unexpectedly, for adsorption of C7–C9 n-alkanes a two-step process was found. QE-TPDA yielded high quality adsorption isobars which were successfully reproduced by Grand-Canonical Monte Carlo molecular simulations. The calculations showed that the specific adsorption behaviour of ZIF-8 is due to the fact that its structure undergoes conformational changes in order to adapt to the guest molecules. QE-TPDA measurements with n-nonane were performed at conditions close to saturation of the adsorbate. This allowed to observe surface-related adsorption on the ZIF-8 crystals, which was correlated with their size.Accepted Author ManuscriptEngineering Thermodynamic

    Structural transformation of layered double hydroxides: an in situ TEM analysis

    No full text
    Layered double hydroxides: in situ TEM uncovers thermal evolution pathways In situ transmission electron microscopy unveils the thermal evolution of Ni-Fe and Mg-Al containing layered double hydroxides (LDH). A team led by Valeria Nicolosi at Trinity College Dublin combined transmission electron microscopy with selected area electron diffraction to provide in-depth morphological and crystallographic understanding of the thermal processes occurring when LDH nanomaterials are heated in situ. In Ni-Fe LDH, after an initial amorphisation stage occurring at 250 °C, a transition to NiO particles arranged within a NiFe2O4 trevorite matrix was detected. Larger NiO particles tended to form on the central sections of the platelets, with smaller NiO crystallites arranged on the platelet edge regions. Conversely, Mg-Al containing LDH evolved into Al2O3 and MgAl2O4 structures, with the development of a porous matrix as opposed to the generation of spherical particles

    Layered double hydroxide as a potent non-viral vector for nucleic acid delivery using gene-activated scaffolds for tissue regeneration applications

    No full text
    Nonviral vectors offer a safe alternative to viral vectors for gene therapy applications, albeit typically exhibiting lower transfection efficiencies. As a result, there remains a significant need for the development of a nonviral delivery system with low cytotoxicity and high transfection efficacy as a tool for safe and transient gene delivery. This study assesses MgAl-NO3 layered double hydroxide (LDH) as a nonviral vector to deliver nucleic acids (pDNA, miRNA and siRNA) to mesenchymal stromal cells (MSCs) in 2D culture and using a 3D tissue engineering scaffold approach. Nanoparticles were formulated by complexing LDH with pDNA, microRNA (miRNA) mimics and inhibitors, and siRNA at varying mass ratios of LDH:nucleic acid. In 2D monolayer, pDNA delivery demonstrated significant cytotoxicity issues, and low cellular transfection was deemed to be a result of the poor physicochemical properties of the LDH-pDNA nanoparticles. However, the lower mass ratios required to successfully complex with miRNA and siRNA cargo allowed for efficient delivery to MSCs. Furthermore, incorporation of LDH-miRNA nanoparticles into collagen-nanohydroxyapatite scaffolds resulted in successful overexpression of miRNA in MSCs, demonstrating the development of an efficacious miRNA delivery platform for gene therapy applications in regenerative medicine
    corecore