67 research outputs found

    Melanoma: Treatments and Resistance

    Get PDF

    Mitochondrial function and bioenergetics during malignant transformation and metastasis

    Get PDF
    Univ Fed Rio de Janeiro, Inst Bioquim Med, Rio de Janeiro, BrazilUniversidade Federal de SĂŁo Paulo, Dept Farmacol, SĂŁo Paulo, BrazilUniversidade Federal de SĂŁo Paulo, Dept Farmacol, SĂŁo Paulo, BrazilWeb of Scienc

    Biomarkers as Key Contributors in Treating Malignant Melanoma Metastases

    Get PDF
    Melanoma is a human neurocristopathy associated with developmental defects in the neural crest-derived epidermal melanocytes. At the present time, at least three hypotheses were identified that may explain melanoma aetiology, as follows: (1) a model of linear progression from differentiated melanocytes to metastatic cancer cells (2) a model involving the appearance of melanoma stemlike cells, and (3) an epigenetic progenitor model of cancer. Treating metastatic melanoma is one of the most serious challenges in the 21st century. This is justified because of a subpopulation of cells presenting a remarkable molecular heterogeneity, which is able to explain the drug resistance and the growing mortality rates worldwide. Fortunately, there are now evidences sustaining the importance of genetic, epigenetic, and metabolomic alterations as biomarkers for classification, staging, and better management of melanoma patients. To illustrate some fascinating insights in this field, the genes BRAF V600E and CTLA4 have been recognized as bona fide targets to benefit melanoma patients. Our research attempts to carefully evaluate data from the literature in order to highlight the link between a molecular disease model and the key contribution of biomarkers in treating malignant melanoma metastases

    The Function of lncRNAs as Epigenetic Regulators

    Get PDF
    Recently, the non-coding RNAs (ncRNAs) have been classified in different categories, and its importance in regulating different cellular processes has been unravelled. The long non-coding RNAs (lncRNAs) can interact with DNA, other RNAs and proteins, including epigenetic modifiers. Some lncRNAs are related to genomic imprinting and are associated with chromatin-modifying complexes that can regulate gene transcription. It is well established that cancer cells have different epigenetic alterations and some of these modifications are associated with lncRNAs. Studies of cancer-associated lncRNAs have defined its function in the process of tumorigenesis, its impact on cell proliferation, cellular signalling, angiogenesis and metastasis. Therefore, having a better knowledge of their role might contribute to a better understanding of the diseases. In this chapter, we will discuss about lncRNA classification and functions, epigenetic marks and how they can guide transcription. Nevertheless, we will discuss how these mechanisms can interact and guide gene expression, as well as recently findings of dysregulation of lncRNAs in cancer

    Apoptotic Cells Contribute to Melanoma Progression and This Effect is Partially Mediated by the Platelet-Activating Factor Receptor

    Get PDF
    There is evidence that the platelet-activating factor receptor (PAFR) is involved in the clearance of apoptotic cells by macrophages, and that this is associated with anti-inflammatory phenotype. Our group has previously shown that coinjection of a large number of apoptotic cells can promote tumor growth from a subtumorigenic dose of melanoma cells. Here, we studied the involvement of the PAFR in the tumor growth promoting effect of apoptotic cells. A sub-tumorigenic dose of melanoma cells (Tm1) was coinjected with apoptotic Tm1 cells, subcutaneously in the flank of C57Bl/6 mice, and the volume was monitored for 30 days. Animals received the PAFR antagonists, WEB2170 or PCA4248 (5 mg/kg body weight) or vehicle, by peritumoral daily injection for 5 days. Results showed that PAFR antagonists significantly inhibited the tumor growth induced by the coinjection of a sub-tumorigenic dose of melanoma cells together with apoptotic cells. This was accompanied by inhibition of early neutrophil and macrophage infiltration. Addition of (platelet-activating factor) to this system has no significant effect. PAFR antagonists did not affect the promoting effect of carrageenan. We suggest that the recognition of apoptotic cells by phagocytes leads to activation of PAFR pathways, resulting in a microenvironment response favorable to melanoma growth

    Apoptotic Cells Contribute to Melanoma Progression and This Effect is Partially Mediated by the Platelet-Activating Factor Receptor

    Get PDF
    There is evidence that the platelet-activating factor receptor (PAFR) is involved in the clearance of apoptotic cells by macrophages, and that this is associated with anti-inflammatory phenotype. Our group has previously shown that coinjection of a large number of apoptotic cells can promote tumor growth from a subtumorigenic dose of melanoma cells. Here, we studied the involvement of the PAFR in the tumor growth promoting effect of apoptotic cells. A sub-tumorigenic dose of melanoma cells (Tm1) was coinjected with apoptotic Tm1 cells, subcutaneously in the flank of C57Bl/6 mice, and the volume was monitored for 30 days. Animals received the PAFR antagonists, WEB2170 or PCA4248 (5 mg/kg body weight) or vehicle, by peritumoral daily injection for 5 days. Results showed that PAFR antagonists significantly inhibited the tumor growth induced by the coinjection of a sub-tumorigenic dose of melanoma cells together with apoptotic cells. This was accompanied by inhibition of early neutrophil and macrophage infiltration. Addition of (platelet-activating factor) to this system has no significant effect. PAFR antagonists did not affect the promoting effect of carrageenan. We suggest that the recognition of apoptotic cells by phagocytes leads to activation of PAFR pathways, resulting in a microenvironment response favorable to melanoma growth

    Endothelial nitric oxide synthase uncoupling as a key mediator of melanocyte malignant transformation associated with sustained stress conditions

    Get PDF
    Melanoma cell lines and cells corresponding to premalignant melanocytes were established by our group after subjecting a nontumorigenic murine melanocyte lineage, melan-a, to sequential cycles of anchorage blockade. Previous results showed that in melan-a cells the superoxide level increases after such procedure. Superoxide production during melanocyte de-adhesion was inhibited by L-sepiapterin, the precursor of eNOS cofactor BH(4), and increased by the inhibitor of BH(4) synthesis, DAHP, hence indicating a partial uncoupling state of eNOS. the eNOS uncoupling seems to be maintained in cells derived from melan-a, because they present decreased nitric oxide and increased superoxide levels. the inhibition of superoxide production in Tm5 melanoma cells with L-sepiapterin reinforces their eNOS-uncoupled state. the maintenance of oxidative stress seems to be important in melanoma apoptosis resistance because Mn(III)TBAP, a superoxide scavenger, or L-sepiapterin renders Tm5 cells more sensitive to anoikis and chemotherapy. More importantly, eNOS uncoupling seems to play a pivotal role in melanocyte malignant transformation induced by sustained anchorage impediment, because no malignant transformation was observed when L-NAME-treated melanocytes were subjected to sequential cycles of de-adhesion. Our results show that uncoupled eNOS contributes to superoxide production during melanocyte anchorage impediment, contributing to anoikis resistance and malignant transformation. (C) 2011 Elsevier Inc. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo, Disciplina Imunol, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Disciplina Farmacol, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Disciplina Nefrol, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Disciplina Imunol, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Disciplina Farmacol, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Disciplina Nefrol, BR-04023900 São Paulo, BrazilFAPESP: 06/61293-1FAPESP: 05/60334-3FAPESP: 08/50366FAPESP: 09/03335-8Web of Scienc
    • …
    corecore