27 research outputs found

    Timp1 Promotes Cell Survival by Activating the PDK1 Signaling Pathway in Melanoma

    Get PDF
    High TIMP1 expression is associated with poor prognosis in melanoma, where it can bind to CD63 and beta 1 integrin, inducing PI3-kinase pathway and cell survival. Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), generated under phosphatidylinositol-3-kinase (PI3K) activation, enables the recruitment and activation of protein kinase B (PKB/AKT) and phosphoinositide-dependent kinase 1 (PDK1) at the membrane, resulting in the phosphorylation of a host of other proteins. Using a melanoma progression model, we evaluated the impact of Timp1 and AKT silencing, as well as PI3K, PDK1, and protein kinase C (PKC) inhibitors on aggressiveness characteristics. Timp1 downregulation resulted in decreased anoikis resistance, clonogenicity, dacarbazine resistance, and in vivo tumor growth and lung colonization. In metastatic cells, pAKT(Thr308) is highly expressed, contributing to anoikis resistance. We showed that PDK1(Ser241) and PKC beta IISer660 are activated by Timp1 in different stages of melanoma progression, contributing to colony formation and anoikis resistance. Moreover, simultaneous inhibition of Timp1 and AKT in metastatic cells resulted in more effective anoikis inhibition. Our findings demonstrate that Timp1 promotes cell survival with the participation of PDK1 and PKC in melanoma. In addition, Timp1 and AKT act synergistically to confer anoikis resistance in advanced tumor stages. This study brings new insights about the mechanisms by which Timp1 promotes cell survival in melanoma, and points to novel perspectives for therapeutic approaches.Fundacao de Amparo a Pesquisa do Estado de Sao PauloConselho Nacional de Desenvolvimento Cientifico e TecnologicoUniv Fed Sao Paulo, Dept Pharmacol, BR-04039032 Sao Paulo, BrazilUniv Sao Paulo, Sch Med, Canc Inst Sao Paulo, Ctr Translat Invest Oncol LIM 24, BR-01246000 Sao Paulo, BrazilFac Med Santa Casa Sao Paulo, BR-01221020 Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Pharmacol, BR-04039032 Sao Paulo, Brazil|FAPESP: 2010/18715-8FAPESP: 2011/12306-1FAPESP: 2014/13663-0CNPq: 470681/2012-8Web of Scienc

    SIRT1 regulates Mxd1 during malignant melanoma progression

    Get PDF
    In a murine melanoma model, malignant transformation promoted by a sustained stress condition was causally related to increased levels of reactive oxygen species resulting in DNA damage and massive epigenetic alterations. Since the chromatin modifier Sirtuin-1 (SIRT1) is a protein attracted to double-stranded DNA break (DSB) sites and can recruit other components of the epigenetic machinery, we aimed to define the role of SIRT1 in melanomagenesis through our melanoma model. The DNA damage marker, gamma H2AX was found increased in melanocytes after 24 hours of deadhesion, accompanied by increased SIRT1 expression and decreased levels of its target, H4K16ac. Moreover, SIRT1 started to be associated to DNMT3B during the stress condition, and this complex was maintained along malignant progression. Mxd1 was identified by ChIP-seq among the DNA sequences differentially associated with SIRT1 during deadhesion and was shown to be a common target of both, SIRT1 and DNMT3B. In addition, Mxd1 was found downregulated from pre-malignant melanocytes to metastatic melanoma cells. Treatment with DNMT inhibitor 5AzaCdR reversed the Mxd1 expression. Sirt1 stable silencing increased Mxd1 mRNA expression and led to down-regulation of MYC targets, such as Cdkn1a, Bcl2 and Psen2, whose upregulation is associated with human melanoma aggressiveness and poor prognosis. We demonstrated a novel role of the stress responsive protein SIRT1 in malignant transformation of melanocytes associated with deadhesion. Mxd1 was identified as a new SIRT1 target gene. SIRT1 promoted Mxd1 silencing, which led to increased activity of MYC oncogene contributing to melanoma progression.FAPESP [2011/0166-38, 2011/12306-1, 2014/13663-0, 2015/07925-5, 2016/06488-3]DAAD [PKZ A/12/79134]FAPESP/BAYLAT [2012/51300-7]Univ Fed Sao Paulo UNIFESP, Dept Pharmacol, Ontogeny & Epigenet Lab, Sao Paulo, SP, BrazilUniv Sao Paulo, Ribeirao Preto Med Sch, Dept Genet, Ribeirao Preto, SP, BrazilFriedrich Alexander Univ Erlangen Nurnberg FAU, Inst Pathol, Expt Tumorpathol, Erlangen, GermanyFriedrich Alexander Univ Erlangen Nurnberg FAU, Dept Pediat & Adolescent Med, Erlangen, GermanyUniv Fed Sao Paulo UNIFESP, Dept Pharmacol, Ontogeny & Epigenet Lab, Sao Paulo, SP, BrazilFAPESP [2011/0166-38, 2011/12306-1, 2014/13663-0, 2015/07925-5, 2016/06488-3]DAAD [PKZ A/12/79134]FAPESP/BAYLAT [2012/51300-7]Web of Scienc

    Timp1 interacts with beta-1 integrin and CD63 along melanoma genesis and confers anoikis resistance by activating PI3-K signaling pathway independently of Akt phosphorylation

    Get PDF
    Background: Anoikis resistance is one of the abilities acquired along tumor progression. This characteristic is associated with metastasis development, since tumorigenic cells must survive independently of cell-matrix interactions in this process. in our laboratory, it was developed a murine melanocyte malignant transformation model associated with a sustained stressful condition. After subjecting melan-a melanocytes to 1, 2, 3 and 4 cycles of anchorage impediment, anoikis resistant cells were established and named 1C, 2C, 3C and 4C, respectively. These cells showed altered morphology and PMA independent cell growth, but were not tumorigenic, corresponding to pre-malignant cells. After limiting dilution of 4C pre-malignant cells, melanoma cell lines with different characteristics were obtained. Previous data from our group showed that increased Timp1 expression correlated with anoikis-resistant phenotype. Timp1 was shown to confer anchorage-independent growth capability to melan-a melanocytes and render melanoma cells more aggressive when injected into mice. However, the mechanisms involved in anoikis regulation by Timp1 in tumorigenic cells are not clear yet.Methods: the beta 1-integrin and Timp1 expression were evaluated by Western blotting and CD63 protein expression by flow cytometry using specific antibodies. To analyze the interaction among Timp1, CD63 and beta 1-integrin, immunoprecipitation assays were performed, anoikis resistance capability was evaluated in the presence or not of the PI3-K inhibitors, Wortmannin and LY294002. Relative expression of TIMP1 and CD63 in human metastatic melanoma cells was analyzed by real time PCR.Results: Differential association among Timp1, CD63 and beta 1-integrins was observed in melan-a melanocytes, 4C pre-malignant melanocytes and 4C11- and 4C11+ melanoma cells. Timp1 present in conditioned medium of melanoma cells rendered melan-a melanocytes anoikis-resistant through PI3-K signaling pathway independently of Akt activation. in human melanoma cell lines, in which TIMP1 and beta-1 integrin were also found to be interacting, TIMP1 and CD63 levels together was shown to correlate significantly with colony formation capacity.Conclusions: Our results show that Timp1 is assembled in a supramolecular complex containing CD63 and beta 1-integrins along melanoma genesis and confers anoikis resistance by activating PI3-K signaling pathway, independently of Akt phosphorylation. in addition, our data point TIMP1, mainly together with CD63, as a potential biomarker of melanoma.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo, Dept Pharmacol, São Paulo, BrazilUniversidade Federal de São Paulo, Microbiol Immunol & Parasitol Dept, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biochem, São Paulo, BrazilLudwig Inst Canc Res, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Pharmacol, São Paulo, BrazilUniversidade Federal de São Paulo, Microbiol Immunol & Parasitol Dept, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biochem, São Paulo, BrazilFAPESP: 2011/12306-1FAPESP: 2010/18715-8CAPES: 2867/10Web of Scienc

    Proteasome inhibition and ROS generation by 4-nerolidylcatechol induces melanoma cell death

    Get PDF
    Induction of apoptotic cell death in response to chemotherapy and other external stimuli has proved extremely difficult in melanoma, leading to tumor progression, metastasis formation and resistance to therapy. A promising approach for cancer chemotherapy is the inhibition of proteasomal activity, as the half-life of the majority of cellular proteins is under proteasomal control and inhibitors have been shown to induce cell death programs in a wide variety of tumor cell types. 4-Nerolidylcatechol (4-NC) is a potent antioxidant whose cytotoxic potential has already been demonstrated in melanoma tumor cell lines. Furthermore, 4-NC was able to induce the accumulation of ubiquitinated proteins, including classic targets of this process such as Mcl-1. As shown for other proteasomal inhibitors in melanoma, the cytotoxic action of 4-NC is time-dependent upon the pro-apoptotic protein Noxa, which is able to bind and neutralize Mcl-1. We demonstrate the role of 4-NC as a potent inducer of ROS and p53. The use of an artificial skin model containing melanoma also provided evidence that 4-NC prevented melanoma proliferation in a 3D model that more closely resembles normal human skin.FAPESP [2006/50479-7, 2006/60930-8, 2008/58817-4, 2009/54816-6 2010/50157-5]FAPESPCNPqCNPqINCT_if (CNPq)INCT-if CNPqCAPESCAPESPRP-USPPRPUS

    Abnormal Epigenetic Regulation of Immune System during Aging

    Get PDF
    Epigenetics refers to the study of mechanisms controlling the chromatin structure, which has fundamental role in the regulation of gene expression and genome stability. Epigenetic marks, such as DNA methylation and histone modifications, are established during embryonic development and epigenetic profiles are stably inherited during mitosis, ensuring cell differentiation and fate. Under the effect of intrinsic and extrinsic factors, such as metabolic profile, hormones, nutrition, drugs, smoke, and stress, epigenetic marks are actively modulated. In this sense, the lifestyle may affect significantly the epigenome, and as a result, the gene expression profile and cell function. Epigenetic alterations are a hallmark of aging and diseases, such as cancer. Among biological systems compromised with aging is the decline of immune response. Different regulators of immune response have their promoters and enhancers susceptible to the modulation by epigenetic marks, which is fundamental to the differentiation and function of immune cells. Consistent evidence has showed the regulation of innate immune cells, and T and B lymphocytes by epigenetic mechanisms. Therefore, age-dependent alterations in epigenetic marks may result in the decline of immune function and this might contribute to the increased incidence of diseases in old people. In order to maintain health, we need to better understand how to avoid epigenetic alterations related to immune aging. In this review, the contribution of epigenetic mechanisms to the loss of immune function during aging will be discussed, and the promise of new means of disease prevention and management will be pointed

    Oxidative Stress Modulates DNA Methylation during Melanocyte Anchorage Blockade Associated with Malignant Transformation1

    No full text
    Both oxidative/nitrosative stress and alterations in DNA methylation are observed during carcinogenesis of different tumor types, but no clear correlation between these events has been demonstrated until now. Melanoma cell lines were previously established after submitting the nontumorigenicmelanocyte lineage, melan-a, to cycles of anchorage blockade. In this work, increased intracellular oxidative species and nitric oxide levels, as well as alterations in the DNA methylation, were observed after melan-a detachment, which were also associated with a decrease in intracellular homocysteine (Hcy), an element in the methionine (universal methyl donor) cycle. This alteration was accompanied by increase in glutathione (GSH) levels and methylated DNA content. Furthermore, a significant increase in dnmt1 and 3b expression was identified along melan-a anchorage blockade. lG-Nitro-l-arginine methyl esther (l-NAME), known as a nitric oxide synthase (NOS) inhibitor, and N-acetyl-l-cysteine (NAC) prevented the increase in global DNA methylation, as well as the increase in dnmt1 and 3b expression, observed during melan-a detachment. Interestingly, both l-NAME and NAC did not inhibit nitric oxide (NO) production in these cells, but abrogated superoxide anion production during anchorage blockade. In conclusion, oxidative stress observed during melanocyte anchorage blockade seems to modulate DNA methylation levels and may directly contribute to the acquisition of an anoikis-resistant phenotype through an epigenetic mechanism

    Inhibition of eukaryotic translation initiation factor 5A (eIF5A) hypusination impairs melanoma growth

    No full text
    The eukaryotic translation initiation factor 5A (eIF5A) undergoes a specific post-translational modification called hypusination. This modification is required for the functionality of this protein. The compound N1-guanyl-1,7-diaminoheptane (GC7) is a potent and selective inhibitor of deoxyhypusine synthase, which catalyses the first step of eIF5A hypusination process. In the present study, the effects of GC7 on cell death were investigated using two cell lines: melan-a murine melanocytes and Tm5 marine melanoma. In vitro treatment with GC7 increased by 3-fold the number of cells presenting DNA fragmentation in Tm5 cells. Exposure to GC7 also decreased viability to both cell lines. This study also describes, for the first time, the in vivo antitumour effect of GC7, as indicated by impaired melanoma growth in C57BL/6 mice. Copyright © 2006 John Wiley & Sons, Ltd

    Cellular Model of Malignant Transformation of Primary Human Astrocytes Induced by Deadhesion/Readhesion Cycles

    No full text
    Astrocytoma is the most common and aggressive tumor of the central nervous system. Genetic and environmental factors, bacterial infection, and several other factors are known to be involved in gliomagenesis, although the complete underlying molecular mechanism is not fully understood. Tumorigenesis is a multistep process involving initiation, promotion, and progression. We present a human model of malignant astrocyte transformation established by subjecting primary astrocytes from healthy adults to four sequential cycles of forced anchorage impediment (deadhesion). After limiting dilution of the surviving cells obtained after the fourth deadhesion/readhesion cycle, three clones were randomly selected, and exhibited malignant characteristics, including increased proliferation rate and capacity for colony formation, migration, and anchorage-independent growth in soft agar. Functional assay results for these clonal cells, including response to temozolomide, were comparable to U87MG—a human glioblastoma-derived cell lineage—reinforcing malignant cell transformation. RNA-Seq analysis by next-generation sequencing of the transformed clones relative to the primary astrocytes revealed upregulation of genes involved in the PI3K/AKT and Wnt/β-catenin signaling pathways, in addition to upregulation of genes related to epithelial–mesenchymal transition, and downregulation of genes related to aerobic respiration. These findings, at a molecular level, corroborate the change in cell behavior towards mesenchymal-like cell dedifferentiation. This linear progressive model of malignant human astrocyte transformation is unique in that neither genetic manipulation nor treatment with carcinogens are used, representing a promising tool for testing combined therapeutic strategies for glioblastoma patients, and furthering knowledge of astrocytoma transformation and progression
    corecore