5 research outputs found

    Prospective, multicenter study of P4HB (Phasixâ„¢) mesh for hernia repair in cohort at risk for complications: 3-Year follow-up

    Get PDF
    Background: This study represents a prospective, multicenter, open-label study to assess the safety, performance, and outcomes of poly-4-hydroxybutyrate (P4HB, Phasix™) mesh for primary ventral, primary incisional, or multiply-recurrent hernia in subjects at risk for complications. This study reports 3-year clinical outcomes. Materials and methods: P4HB mesh was implanted in 121 patients via retrorectus or onlay technique. Physical exam and/or quality of life surveys were completed at 1, 3, 6,12, 18, 24, and 36 months, with 5-year (60-month) follow-up ongoing. Results: A total of n = 121 patients were implanted with P4HB mesh (n = 75 (62%) female) with a mean age of 54.7 ± 12.0 years and mean BMI of 32.2 ± 4.5 kg/m2 (±standard deviation). Comorbidities included: obesity (78.5%), active smokers (23.1%), COPD (28.1%), diabetes mellitus (33.1%), immunosuppression (8.3%), coronary artery disease (21.5%), chronic corticosteroid use (5.0%), hypo-albuminemia (2.5%), advanced age (5.0%), and renal insufficiency (0.8%). Hernias were repaired via retrorectus (n = 45, 37.2% with myofascial release (MR) or n = 43, 35.5% without MR), onlay (n = 8, 6.6% with MR or n = 24, 19.8% without MR), or not reported (n = 1, 0.8%). 82 patients (67.8%) completed 36-month follow-up. 17 patients (17.9% ± 0.4%) experienced hernia recurrence at 3 years, with n = 9 in the retrorectus group and n = 8 in the onlay group. SSI (n = 11) occurred in 9.3% ± 0.03% of patients. Conclusions: Long-term outcomes following ventral hernia repair with P4HB mesh demonstrate low recurrence rates at 3-year (36-month) postoperative time frame with no patients developing late mesh complications or requiring mesh removal. 5-year (60-month) follow-up is ongoing

    Platinum-Paper Micromotors: An Urchin-like Nanohybrid Catalyst for Green Monopropellant Bubble-Thrusters

    No full text
    Platinum nanourchins supported on microfibrilated cellulose films (MFC) were fabricated and evaluated as hydrogen peroxide catalysts for small-scale, autonomous underwater vehicle (AUV) propulsion systems. The catalytic substrate was synthesized through the reduction of chloroplatinic acid to create a thick film of Pt coral-like microstructures coated with Pt urchin-like nanowires that are arrayed in three dimensions on a two-dimensional MFC film. This organic/inorganic nanohybrid displays high catalytic ability (reduced activation energy of 50–63% over conventional materials and 13–19% for similar Pt nanoparticle-based structures) during hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) decomposition as well as sufficient propulsive thrust (>0.5 N) from reagent grade H<sub>2</sub>O<sub>2</sub> (30% w/w) fuel within a small underwater reaction vessel. The results demonstrate that these layered nanohybrid sheets are robust and catalytically effective for green, H<sub>2</sub>O<sub>2</sub>-based micro-AUV propulsion where the storage and handling of highly explosive, toxic fuels are prohibitive due to size-requirements, cost limitations, and close person-to-machine contact
    corecore