11 research outputs found

    Bioenergetic Adaptations in Chemoresistant Ovarian Cancer Cells.

    Get PDF
    Earlier investigations have revealed that tumor cells undergo metabolic reprogramming and mainly derive their cellular energy from aerobic glycolysis rather than oxidative phosphorylation even in the presence of oxygen. However, recent studies have shown that certain cancer cells display increased oxidative phosphorylation or high metabolically active phenotype. Cellular bioenergetic profiling of 13 established and 12 patient derived ovarian cancer cell lines revealed significant bioenergetics diversity. The bioenergetics phenotype of ovarian cancer cell lines correlated with functional phenotypes of doubling time and oxidative stress. Interestingly, chemosensitive cancer cell lines (A2780 and PEO1) displayed a glycolytic phenotype while their chemoresistant counterparts (C200 and PEO4) exhibited a high metabolically active phenotype with the ability to switch between oxidative phosphorylation or glycolysis. The chemosensitive cancer cells could not survive glucose deprivation, while the chemoresistant cells displayed adaptability. In the patient derived ovarian cancer cells, a similar correlation was observed between a high metabolically active phenotype and chemoresistance. Thus, ovarian cancer cells seem to display heterogeneity in using glycolysis or oxidative phosphorylation as an energy source. The flexibility in using different energy pathways may indicate a survival adaptation to achieve a higher \u27cellular fitness\u27 that may be also associated with chemoresistance

    Metformin prevents aggressive ovarian cancer growth driven by high-energy diet: similarity with calorie restriction.

    Get PDF
    Caloric restriction (CR) was recently demonstrated by us to restrict ovarian cancer growth in vivo. CR resulted in activation of energy regulating enzymes adenosine monophosphate activated kinase (AMPK) and sirtuin 1 (SIRT1) followed by downstream inhibition of Akt-mTOR. In the present study, we investigated the effects of metformin on ovarian cancer growth in mice fed a high energy diet (HED) and regular diet (RD) and compared them to those seen with CR in an immunocompetent isogeneic mouse model of ovarian cancer. Mice either on RD or HED diet bearing ovarian tumors were treated with 200 mg/kg metformin in drinking water. Metformin treatment in RD and HED mice resulted in a significant reduction in tumor burden in the peritoneum, liver, kidney, spleen and bowel accompanied by decreased levels of growth factors (IGF-1, insulin and leptin), inflammatory cytokines (MCP-1, IL-6) and VEGF in plasma and ascitic fluid, akin to the CR diet mice. Metformin resulted in activation of AMPK and SIRT1 and inhibition of pAkt and pmTOR, similar to CR. Thus metformin can closely mimic CR\u27s tumor suppressing effects by inducing similar metabolic changes, providing further evidence of its potential not only as a therapeutic drug but also as a preventive agent

    Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer

    Get PDF
    BACKGROUND: Nanomedicine is a very promising field and nanomedical drugs have recently been used as therapeutic agents against cancer. In a previous study, we showed that Nanoceria (NCe), nanoparticles of cerium oxide, significantly inhibited production of reactive oxygen species, cell migration and invasion of ovarian cancer cells in vitro, without affecting cell proliferation and significantly reduced tumor growth in an ovarian cancer xenograft nude model. Increased expression of folate receptor-α, an isoform of membrane-bound folate receptors, has been described in ovarian cancer. To enable NCe to specifically target ovarian cancer cells, we conjugated nanoceria to folic acid (NCe-FA). Our aim was to investigate the pre-clinical efficacy of NCe-FA alone and in combination with Cisplatin. METHODS: Ovarian cancer cell lines were treated with NCe or NCe-FA. Cell viability was assessed by MTT and colony forming units. In vivo studies were carried in A2780 generated mouse xenografts treated with 0.1 mg/Kg NCe, 0.1 mg/Kg; NCe-FA and cisplatinum, 4 mg/Kg by intra-peritoneal injections. Tumor weights and burden scores were determined. Immunohistochemistry and toxicity assays were used to evaluate treatment effects. RESULTS: We show that folic acid conjugation of NCe increased the cellular NCe internalization and inhibited cell proliferation. Mice treated with NCe-FA had a lower tumor burden compared to NCe, without any vital organ toxicity. Combination of NCe-FA with cisplatinum decreased the tumor burden more significantly. Moreover, NCe-FA was also effective in reducing proliferation and angiogenesis in the xenograft mouse model. CONCLUSION: Thus, specific targeting of ovarian cancer cells by NCe-FA holds great potential as an effective therapeutic alone or in combination with standard chemotherapy

    Targeting of free fatty acid receptor 1 in EOC: A novel strategy to restrict the adipocyte-EOC dependence

    No full text
    OBJECTIVES: Adipocyte derived free fatty acids (FFA) promote epithelial ovarian cancer (EOC) by acting as a fuel source to support the energy requirement of the cancer cells. FFA may also exert biological effects through signaling pathways. Recently, a family of FFA activated G-protein coupled receptors (FFAR/GPCRs) was identified. Our objective was to investigate the role of FFAR/GPCRs in EOC and assess their potential as therapeutic targets. METHODS: The mRNA (RT-PCR) expression of FFAR/GPCR family members (FFAR1/GPR40; FFAR2/GPR43, FFAR3/GPR41, FFAR4/GPR120 and GPR84) was examined in: (1) a syngeneic mouse model of EOC fed high energy diet (60% fat) or regular diet (30% fat), (2) EOC cell lines exposed to free fatty acids and (3) specimens from 13 histologically normal ovaries and 28 high grade ovarian serous carcinomas. The GPR 40 antagonist, GW1100, was used to inhibit FFAR1/GPR40 and cell survival was assayed by MTT in various cell lines. RESULTS: High Grade Serous carcinoma specimens expressed significantly increased GPR40 compared to normal ovaries (p=0.0020). Higher expression was noted in advanced stage disease. ID8 ovarian tumors from mice fed with high fat diet also showed higher GPR40 expression. Exposing EOC cells to FFAs, increased GPR40 expression. Treatment of EOC cell lines with GW100 resulted in growth inhibition and was associated with an alteration in their energy metabolism. CONCLUSION: FFA-induced cancer cell growth may be partly mediated through FFAR1/GPR40. Targeting of FFAR1/GPR40 may be an attractive treatment strategy in EOC, and possibly offers a targeted treatment for a subset of EOC patients

    Synergistic effect of MEK inhibitor and metformin combination in low grade serous ovarian cancer

    No full text
    OBJECTIVE: Low-grade serous ovarian cancer (LGSOC) constitutes 5-8% of epithelial ovarian cancers and is refractory to chemotherapy. We and others have shown metformin to cause significant growth inhibition in high-grade ovarian cancer both in vitro and in vivo. Here, we aimed to analyze if metformin was effective in inhibiting proliferation of LGSOC alone and in combination with MEK inhibitor. METHODS: Three LGSOC lines (VOA1056, VOA1312 and VOA5646) were treated with metformin, trametinib or 2-deoxyglucose (2DG) alone or in combination with metformin. Proliferation was measured by MTT assay over a period of four days. Protein expression was measured by western blotting. Seahorse Analyzer was used to measure effect of metformin on glycolysis and mitochondrial respiration. RESULTS: All LGSOC cell lines showed significant inhibition with metformin in a dose- and time-dependent manner. Trametinib significantly inhibited the growth of Ras mutated LGSOC lines (VOA1312 and VOA1056), while VOA5646 cells without RAS mutation did not show any response. Metformin and trametinib combination showed synergistic inhibition of RAS mutated VOA1312 and VOA1056 cells, but not for non-Ras mutated VOA5646 cells. Metformin and trametinib increased phosphorylated AMPK expression in LGSOC lines with combination showing stronger expression. Trametinib decreased 42/44 mitogen activated kinase phosphorylation in all cell lines, while metformin and combination had no significant effect. 2-DG significantly inhibited glycolysis in all LGSOC lines and combination with metformin showed synergistic inhibitory effect. CONCLUSIONS: Metformin alone or in combination with MEK and glycolytic inhibitors may be a potential therapy for LGSOC, a cancer that is indolent but chemo-resistant

    Synergistic Effect of MEK Inhibitor and Metformin Combination in Low Grade Serous Ovarian Cancer

    No full text
    OBJECTIVE: Low-grade serous ovarian cancer (LGSOC) constitutes 5-8% of epithelial ovarian cancers and is refractory to chemotherapy. We and others have shown metformin to cause significant growth inhibition in high-grade ovarian cancer both in vitro and in vivo. Here, we aimed to analyze if metformin was effective in inhibiting proliferation of LGSOC alone and in combination with MEK inhibitor. METHODS: Three LGSOC lines (VOA1056, VOA1312 and VOA5646) were treated with metformin, trametinib or 2-deoxyglucose (2DG) alone or in combination with metformin. Proliferation was measured by MTT assay over a period of four days. Protein expression was measured by western blotting. Seahorse Analyzer was used to measure effect of metformin on glycolysis and mitochondrial respiration. RESULTS: All LGSOC cell lines showed significant inhibition with metformin in a dose- and time-dependent manner. Trametinib significantly inhibited the growth of Ras mutated LGSOC lines (VOA1312 and VOA1056), while VOA5646 cells without RAS mutation did not show any response. Metformin and trametinib combination showed synergistic inhibition of RAS mutated VOA1312 and VOA1056 cells, but not for non-Ras mutated VOA5646 cells. Metformin and trametinib increased phosphorylated AMPK expression in LGSOC lines with combination showing stronger expression. Trametinib decreased 42/44 mitogen activated kinase phosphorylation in all cell lines, while metformin and combination had no significant effect. 2-DG significantly inhibited glycolysis in all LGSOC lines and combination with metformin showed synergistic inhibitory effect. CONCLUSIONS: Metformin alone or in combination with MEK and glycolytic inhibitors may be a potential therapy for LGSOC, a cancer that is indolent but chemo-resistant
    corecore