7 research outputs found

    A measure of the impact of construction activity on the El Paso economy

    No full text
    Abstract not availabl

    Evaluating the impact of a Canadian national anatomy and radiology contouring boot camp for radiation oncology residents

    No full text
    © 2015 Elsevier Inc. All rights reserved. Background Radiation therapy treatment planning has advanced over the past 2 decades, with increased emphasis on 3-dimensional imaging for target and organ-at-risk (OAR) delineation. Recent studies suggest a need for improved resident instruction in this area. We developed and evaluated an intensive national educational course ( boot camp ) designed to provide dedicated instruction in site-specific anatomy, radiology, and contouring using a multidisciplinary (MDT) approach. Methods The anatomy and radiology contouring (ARC) boot camp was modeled after prior single-institution pilot studies and a needs-assessment survey. The boot camp incorporated joint lectures from radiation oncologists, anatomists, radiologists, and surgeons, with hands-on contouring instruction and small group interactive seminars using cadaveric prosections and correlative axial radiographs. Outcomes were evaluated using pretesting and posttesting, including anatomy/radiology multiple-choice questions (MCQ), timed contouring sessions (evaluated relative to a gold standard using Dice similarity metrics), and qualitative questions on satisfaction and perceived effectiveness. Analyses of pretest versus posttest scores were performed using nonparametric paired testing. Results Twenty-nine radiation oncology residents from 10 Canadian universities participated. As part of their current training, 29%, 75%, and 21% receive anatomy, radiology, and contouring instruction, respectively. On posttest scores, the MCQ knowledge scores improved significantly (pretest mean 60% vs posttest mean 80%, P\u3c.001). Across all contoured structures, there was a 0.20 median improvement in students\u27 average Dice score (P\u3c.001). For individual structures, significant Dice improvements occurred in 10 structures. Residents self-reported an improved ability to contour OARs and interpret radiographs in all anatomic sites, 92% of students found the MDT format effective for their learning, and 93% found the boot camp more effective than educational sessions at their own institutions. All of the residents (100%) would recommend this course to others. Conclusions The ARC boot camp is an effective intervention for improving radiation oncology residents\u27 knowledge and understanding of anatomy and radiology in addition to enhancing their confidence and accuracy in contouring

    Evaluation of a 3-Dimensional–Printed Head Simulation Technique for Teaching Flexible Nasopharyngoscopy to Radiation Oncology Residents

    No full text
    © 2020 Elsevier Inc. Purpose: Simulation-based medical education is an effective tool for medical teaching, but simulation-based medical education deployment in radiation oncology (RO) is limited. Flexible nasopharyngoscopy (FNP), an essential skill for RO residents, requires practice that typically occurs on volunteer patients, introducing the potential for stress and discomfort. We sought to develop a high-fidelity simulator and intervention that provides RO residents the opportunity to develop FNP skills in a low-pressure environment. Methods and Materials: Computed tomography images were used to create an anatomically accurate 3-dimensional–printed model of the head and neck region. An intervention incorporating didactic instruction, multimedia content, and FNP practice on the model was designed and administered to RO residents attending the Anatomy and Radiology Contouring Bootcamp. Participants completed pre- and postintervention evaluations of the training session and model fidelity, and self-assessments of FNP skill and confidence performing FNP. Participants were video recorded performing FNP pre- and postintervention. Videos were scored by a blinded observer on a predefined rubric. Changes in scores were evaluated using the Wilcoxon signed-rank test. Results: Twenty-four participants from 17 institutions and 4 countries completed the intervention, 50% were women, and most were senior residents. Postintervention, FNP confidence and FNP performance improved significantly (mean ± standard deviation on a 10-point scale: 1.8 ± 1.8, P \u3c .001; 2.2 ± 2.0, P \u3c .001, respectively). Participants felt the model was helpful (mean ± standard deviation on a 5-point scale: 4.2 ± 0.6), anatomically correct (4.1 ± 0.9), and aided in spatial comprehension (4.3 ± 0.8). Overall satisfaction for the intervention was high (4.3 ± 0.8). Participants strongly agreed the intervention should be integrated into RO training programs (4.3 ± 0.8). Conclusions: A 3-dimensional–printed model and associated intervention were effective at improving FNP performance and the teaching method was rated highly by participants. RO residents may benefit from broader dissemination of this technique to improve trainee performance
    corecore