2,576 research outputs found

    Recalibrating the Wide-field Infrared Survey Explorer (WISE) W4 Filter

    Get PDF
    We present a revised effective wavelength and photometric calibration for the Wide-field Infrared Survey Explorer (WISE) W4 band, including tests of empirically motivated modifications to its pre-launch laboratory-measured relative system response curve. We derived these by comparing measured W4 photometry with photometry synthesised from spectra of galaxies and planetary nebulae. The difference between measured and synthesised photometry using the pre-launch laboratory-measured W4 relative system response can be as large as 0.3 mag for galaxies and 1 mag for planetary nebulae. We find the W4 effective wavelength should be revised upward by 3.3%, from 22.1 micron to 22.8 micron, and the W4 AB magnitude of Vega should be revised from m = 6.59 to m = 6.66. In an attempt to reproduce the observed W4 photometry, we tested three modifications to the pre-launch laboratory-measured W4 relative system response curve, all of which have an effective wavelength of 22.8 micron. Of the three relative system response curve models tested, a model that matches the laboratory-measured relative system response curve, but has the wavelengths increased by 3.3% (or 0.73 micron) achieves reasonable agreement between the measured and synthesised photometry.Comment: Accepted for publication in Publications of the Astronomical Society of Australia, 6 pages, 4 figures, 1 tabl

    Bending and Breathing Modes of the Galactic Disk

    Full text link
    We explore the hypothesis that a passing satellite or dark matter subhalo has excited coherent oscillations of the Milky Way's stellar disk in the direction perpendicular to the Galactic midplane. This work is motivated by recent observations of spatially dependent bulk vertical motions within ~ kpc of the Sun. A satellite can transfer a fraction of its orbital energy to the disk stars as it plunges through the Galactic midplane thereby heating and thickening the disk. Bulk motions arise during the early stages of such an event when the disk is still in an unrelaxed state. We present simple toy-model calculations and simulations of disk-satellite interactions, which show that the response of the disk depends on the relative velocity of the satellite. When the component of the satellite's velocity perpendicular to the disk is small compared with that of the stars, the perturbation is predominantly a bending mode. Conversely, breathing and higher order modes are excited when the vertical velocity of the satellite is larger than that of the stars. We argue that the compression and rarefaction motions seen in three different surveys are in fact breathing mode perturbations of the Galactic disk.Comment: 12 pages, 12 figure

    HI observations of the nearest starburst galaxy NGC 253 with the SKA precursor KAT-7

    Get PDF
    We present HI observations of the Sculptor Group starburst spiral galaxy NGC 253, obtained with the Karoo Array Telescope (KAT-7). KAT-7 is a pathfinder for the SKA precursor MeerKAT, under construction. The short baselines and low system temperature of the telescope make it very sensitive to large scale, low surface brightness emission. The KAT-7 observations detected 33% more flux than previous VLA observations, mainly in the outer parts and in the halo for a total HI mass of 2.1±0.12.1 \pm 0.1 ×109\times 10^{9} M_{\odot}. HI can be found at large distances perpendicular to the plane out to projected distances of ~9-10 kpc away from the nucleus and ~13-14 kpc at the edge of the disk. A novel technique, based on interactive profile fitting, was used to separate the main disk gas from the anomalous (halo) gas. The rotation curve (RC) derived for the HI disk confirms that it is declining in the outer parts, as seen in previous optical Fabry-Perot measurements. As for the anomalous component, its RC has a very shallow gradient in the inner parts and turns over at the same radius as the disk, kinematically lagging by ~100 km/sec. The kinematics of the observed extra planar gas is compatible with an outflow due to the central starburst and galactic fountains in the outer parts. However, the gas kinematics shows no evidence for inflow. Analysis of the near-IR WISE data, shows clearly that the star formation rate (SFR) is compatible with the starburst nature of NGC 253.Comment: 18 pages, 20 figures, 8 Tables. Accepted for publication to MNRA

    From Spitzer Galaxy Photometry to Tully-Fisher Distances

    Get PDF
    This paper involves a data release of the observational campaign: Cosmicflows with Spitzer (CFS). Surface photometry of the 1270 galaxies constituting the survey is presented. An additional ~ 400 galaxies from various other Spitzer surveys are also analyzed. CFS complements the Spitzer Survey of Stellar Structure in Galaxies, that provides photometry for an additional 2352 galaxies, by extending observations to low galactic latitudes (|b|<30 degrees). Among these galaxies are calibrators, selected in K band, of the Tully-Fisher relation. The addition of new calibrators demonstrate the robustness of the previously released calibration. Our estimate of the Hubble constant using supernova host galaxies is unchanged, H0 = 75.2 +/- 3.3 km/s/Mpc. Distance-derived radial peculiar velocities, for the 1935 galaxies with all the available parameters, will be incorporated into a new data release of the Cosmicflows project. The size of the previous catalog will be increased by 20%, including spatial regions close to the Zone of Avoidance.Comment: Accepted for publication in MNRAS, 16 pages, 14 figures, 6 table

    Radio galaxies and their magnetic fields out to z <= 3

    Full text link
    We present polarisation properties at 1.41.4\,GHz of two separate extragalactic source populations: passive quiescent galaxies and luminous quasar-like galaxies. We use data from the {\it Wide-Field Infrared Survey Explorer} data to determine the host galaxy population of the polarised extragalactic radio sources. The quiescent galaxies have higher percentage polarisation, smaller radio linear size, and 1.41.4\,GHz luminosity of 6×1021<L1.4<7×10256\times10^{21}<L_{\rm 1.4}<7\times10^{25}\,W Hz1^{-1}, while the quasar-like galaxies have smaller percentage polarisation, larger radio linear size at radio wavelengths, and a 1.41.4\,GHz luminosity of 9×1023<L1.4<7×10289\times10^{23}<L_{\rm 1.4}<7\times10^{28}\,W Hz1^{-1}, suggesting that the environment of the quasar-like galaxies is responsible for the lower percentage polarisation. Our results confirm previous studies that found an inverse correlation between percentage polarisation and total flux density at 1.41.4\,GHz. We suggest that the population change between the polarised extragalactic radio sources is the origin of this inverse correlation and suggest a cosmic evolution of the space density of quiescent galaxies. Finally, we find that the extragalactic contributions to the rotation measures (RMs) of the nearby passive galaxies and the distant quasar-like galaxies are different. After accounting for the RM contributions by cosmological large-scale structure and intervening Mg\,{II} absorbers we show that the distribution of intrinsic RMs of the distant quasar-like sources is at most four times as wide as the RM distribution of the nearby quiescent galaxies, if the distribution of intrinsic RMs of the WISE-Star sources itself is at least several rad m2^{-2} wide.Comment: 12 pages, 8 figures, accepted for publication into MNRA

    Variability Flagging in the Wide-field Infrared Survey Explorer Preliminary Data Release

    Get PDF
    The Wide-field Infrared Survey Explorer Preliminary Data Release Source Catalog contains over 257 million objects. We describe the method used to flag variable source candidates in the Catalog. Using a method based on the chi-square of single-exposure flux measurements, we generated a variability flag for each object, and have identified almost 460,000 candidate sources that exhibit significant flux variability with greater than ~7σ confidence. We discuss the flagging method in detail and describe its benefits and limitations. We also present results from the flagging method, including example light curves of several types of variable sources including Algol-type eclipsing binaries, RR Lyr, W UMa, and a blazar candidate
    corecore