2,302 research outputs found

    Theoretical simulation of the anisotropic phases of antiferromagnetic thin films

    Get PDF
    We simulate antiferromagnetic thin films. Dipole-dipole and antiferromagnetic exchange interactions as well as uniaxial and quadrupolar anisotropies are taken into account. Various phases unfold as the corresponding parameters, J, D and C, as well as the temperature T and the number n of film layers vary. We find (1) how the strength Delta_m of the anisotropy arising from dipole-dipole interactions varies with the number of layers m away from the film's surface, with J and with n; (2) a unified phase diagram for all n-layer films and bulk systems; (3) a layer dependent spin reorientation (SR) phase in which spins rotate continuously as T, D, C and n vary; (4) that the ratio of the SR to the ordering temperature depends (approximately) on n only through (D+Delta/n)/C, and hardly on J; (5) a phase transformation between two different magnetic orderings, in which spin orientations may or may not change, for some values of J, by varying n.Comment: 10 LaTeX pages, 13 eps figures. Submitted to PRB on 30 June 2006. Accepted on 10 October 200

    Antibacterial Silver

    Get PDF
    The antibacterial activity of silver has long been known and has found a variety of applications because its toxicity to human cells is considerably lower than to bacteria. The most widely documented uses are prophylactic treatment of burns and water disinfection. However, the mechanisms by which silver kills cells are not known. Information on resistance mechanisms is apparently contradictory and even the chemistry of Ag+ in such systems is poorly understood

    Optical Spectroscopic Survey of High-latitude WISE-selected Sources

    Get PDF
    We report on the results of an optical spectroscopic survey at high Galactic latitude (|b| ≥ 30°) of a sample of WISE-selected targets, grouped by WISE W1 (λ_eff = 3.4 μm) flux, which we use to characterize the sources WISE detected. We observed 762 targets in 10 disjoint fields centered on ultraluminous infrared galaxy candidates using DEIMOS on Keck II. We find 0.30 ± 0.02 galaxies arcmin–2 with a median redshift of z = 0.33 ± 0.01 for the sample with W1 ≥ 120 μJy. The foreground stellar densities in our survey range from 0.23 ± 0.07 arcmin–2 to 1.1 ± 0.1 arcmin–2 for the same sample. We obtained spectra that produced science grade redshifts for ≥90% of our targets for sources with W1 flux ≥120 μJy that also had an i-band flux gsim 18 μJy. We used this for targeting very preliminary data reductions available to the team in 2010 August. Our results therefore present a conservative estimate of what is possible to achieve using WISE's Preliminary Data Release for the study of field galaxies

    Bell's theorem as a signature of nonlocality: a classical counterexample

    Full text link
    For a system composed of two particles Bell's theorem asserts that averages of physical quantities determined from local variables must conform to a family of inequalities. In this work we show that a classical model containing a local probabilistic interaction in the measurement process can lead to a violation of the Bell inequalities. We first introduce two-particle phase-space distributions in classical mechanics constructed to be the analogs of quantum mechanical angular momentum eigenstates. These distributions are then employed in four schemes characterized by different types of detectors measuring the angular momenta. When the model includes an interaction between the detector and the measured particle leading to ensemble dependencies, the relevant Bell inequalities are violated if total angular momentum is required to be conserved. The violation is explained by identifying assumptions made in the derivation of Bell's theorem that are not fulfilled by the model. These assumptions will be argued to be too restrictive to see in the violation of the Bell inequalities a faithful signature of nonlocality.Comment: Extended manuscript. Significant change

    Groups of Galaxies in the Two Micron All-Sky Redshift Survey

    Get PDF
    We present the results of applying a percolation algorithm to the initial release of the Two Micron All-Sky Survey Extended Source Catalog, using subsequently measured redshifts for almost all of the galaxies with K < 11.25 mag. This group catalog is based on the first near-IR all-sky flux-limited survey that is complete to |b| = 5 deg. We explore the dependence of the clustering on the length and velocity scales involved. The paper describes a group catalog, complete to a limiting redshift of 10,000 km/s, created by maximizing the number of groups containing 3 or more members. A second catalog is also presented, created by requiring a minimum density contrast of 80 to identify groups. We identify known nearby clusters in the catalogs and contrast the groups identified in the two catalogs. We examine and compare the properties of the determined groups and verify that the results are consistent with the UZC-SSRS2 and northern CfA redshift survey group catalogs. The all-sky nature of the catalog will allow the development of a flow-field model based on the density field inferred from the estimated cluster masses.Comment: Accepted for publication in ApJ (29 pages including 13 figures). A version with high-resolution figures is available at http://www.cfa.harvard.edu/~acrook/preprints

    The First Supernova Explosions: Energetics, Feedback, and Chemical Enrichment

    Full text link
    We perform three-dimensional smoothed particle hydrodynamics simulations in a realistic cosmological setting to investigate the expansion, feedback, and chemical enrichment properties of a 200 M_sun pair-instability supernova in the high-redshift universe. We find that the SN remnant propagates for a Hubble time at z = 20 to a final mass-weighted mean shock radius of 2.5 kpc (proper), roughly half the size of the HII region, and in this process sweeps up a total gas mass of 2.5*10^5 M_sun. The morphology of the shock becomes highly anisotropic once it leaves the host halo and encounters filaments and neighboring minihalos, while the bulk of the shock propagates into the voids of the intergalactic medium. The SN entirely disrupts the host halo and terminates further star formation for at least 200 Myr, while in our specific case it exerts positive mechanical feedback on neighboring minihalos by shock-compressing their cores. In contrast, we do not observe secondary star formation in the dense shell via gravitational fragmentation, due to the previous photoheating by the progenitor star. We find that cooling by metal lines is unimportant for the entire evolution of the SN remnant, while the metal-enriched, interior bubble expands adiabatically into the cavities created by the shock, and ultimately into the voids with a maximum extent similar to the final mass-weighted mean shock radius. Finally, we conclude that dark matter halos of at least M_vir > 10^8 M_sun must be assembled to recollect all components of the swept-up gas.Comment: 16 pages, 14 figures, published in Ap
    • …
    corecore