43 research outputs found

    The Detection of a Massive Chain of Dark H i Clouds in the GAMA G23 Field

    Get PDF
    We report on the detection of a large, extended H i cloud complex in the Galaxy and Mass Survey G23 field, located at a redshift of z ∼0.03, observed as part of the MeerKAT Habitat of Galaxies Survey campaign (a pilot survey to explore the mosaicing capabilities of the MeerKAT telescope). The cloud complex, with a total mass of 1010.0 M, lies in proximity to a large galaxy group with M dyn ∼1013.5 M. We identify seven H peak concentrations, interconnected as a tenuous chain structure, extending ∼400 kpc from east to west, with the largest (central) concentration containing 109.7 M in H gas distributed across 50 kpc. The main source is not detected in ultraviolet, optical, or infrared imaging. The implied gas mass-to-light ratio (M H I/L r) is extreme (>1000) even in comparison to other dark clouds. The complex has very little kinematic structure (110 km s-1), making it difficult to identify cloud rotation. Assuming pressure support, the total mass of the central concentration is > 1010.2 M, while a lower limit to the dynamical mass in the case of full rotational support is 1010.4 M. If the central concentration is a stable structure, it has to contain some amount of unseen matter, but potentially less than is observed for a typical galaxy. It is, however, not clear whether the structure has any gravitationally stable concentrations. We report a faint UV-optical-infrared source in proximity to one of the smaller concentrations in the gas complex, leading to a possible stellar association. The system nature and origins is enigmatic, potentially being the result of an interaction with or within the galaxy group it appears to be associated with

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore