49 research outputs found

    Ca2+ Regulates the Drosophila Stoned-A and Stoned-B Proteins Interaction with the C2B Domain of Synaptotagmin-1

    Get PDF
    The dicistronic Drosophila stoned gene is involved in exocytosis and/or endocytosis of synaptic vesicles. Mutations in either stonedA or stonedB cause a severe disruption of neurotransmission in fruit flies. Previous studies have shown that the coiled-coil domain of the Stoned-A and the ”-homology domain of the Stoned-B protein can interact with the C2B domain of Synaptotagmin-1. However, very little is known about the mechanism of interaction between the Stoned proteins and the C2B domain of Synaptotagmin-1. Here we report that these interactions are increased in the presence of Ca2+. The Ca2+-dependent interaction between the ”-homology domain of Stoned-B and C2B domain of Synaptotagmin-1 is affected by phospholipids. The C-terminal region of the C2B domain, including the tryptophan-containing motif, and the Ca2+ binding loop region that modulate the Ca2+-dependent oligomerization, regulates the binding of the Stoned-A and Stoned-B proteins to the C2B domain. Stoned-B, but not Stoned-A, interacts with the Ca2+-binding loop region of C2B domain. The results indicate that Ca2+-induced self-association of the C2B domain regulates the binding of both Stoned-A and Stoned-B proteins to Synaptotagmin-1. The Stoned proteins may regulate sustainable neurotransmission in vivo by binding to Ca2+-bound Synaptotagmin-1 associated synaptic vesicles

    How Can Home Care Patients and Their Caregivers Better Manage Fall Risks by Leveraging Information Technology?

    Get PDF
    Objectives: From the perspectives of home care patients and caregivers, this study aimed to (a) identify the challenges for better fall-risk management during home care episodes and (b) explore the opportunities for them to leverage health information technology (IT) solutions to improve fall-risk management during home care episodes. Methods: Twelve in-depth semistructured interviews with the patients and caregivers were conducted within a descriptive single case study design in 1 home health agency (HHA) in the mid-Atlantic region of the United States. Results: Patients and caregivers faced challenges to manage fall risks such as unmanaged expectations, deteriorating cognitive abilities, and poor care coordination between the HHA and physician practices. Opportunities to leverage health IT solutions included patient portals, telehealth, and medication reminder apps on smartphones. Conclusion: Effectively leveraging health IT could further empower patients and caregivers to reduce fall risks by acquiring the necessary information and following clinical advice and recommendations. The HHAs could improve the quality of care by adopting IT solutions that show more promise of improving the experiences of patients and caregivers in fall-risk management

    An In Vitro System for Studying Murid Herpesvirus-4 Latency and Reactivation

    Get PDF
    The narrow species tropisms of Epstein-Barr Virus (EBV) and the Kaposi's Sarcoma -associated Herpesvirus (KSHV) have made Murid Herpesvirus-4 (MuHV-4) an important tool for understanding how gammaherpesviruses colonize their hosts. However, while MuHV-4 pathogenesis studies can assign a quantitative importance to individual genes, the complexity of in vivo infection can make the underlying mechanisms hard to discern. Furthermore, the lack of good in vitro MuHV-4 latency/reactivation systems with which to dissect mechanisms at the cellular level has made some parallels with EBV and KSHV hard to draw. Here we achieved control of the MuHV-4 lytic/latent switch in vitro by modifying the 5â€Č untranslated region of its major lytic transactivator gene, ORF50. We terminated normal ORF50 transcripts by inserting a polyadenylation signal and transcribed ORF50 instead from a down-stream, doxycycline-inducible promoter. In this way we could establish fibroblast clones that maintained latent MuHV-4 episomes without detectable lytic replication. Productive virus reactivation was then induced with doxycycline. We used this system to show that the MuHV-4 K3 gene plays a significant role in protecting reactivating cells against CD8+ T cell recognition

    Post-Translational Modifications and Lipid Binding Profile of Insect Cell-Expressed Full-Length Mammalian Synaptotagmin 1

    Get PDF
    ABSTRACT: Synaptotagmin 1 (Syt1) is a Ca2+ sensor for SNARE-mediated, Ca2+-triggered synaptic vesicle fusion in neurons. It is composed of luminal, transmembrane, linker, and two Ca2+-binding (C2) domains. Here we describe expression and purification of full-length mammalian Syt1 in insect cells along with an extensive biochemical characterization of the purified protein. The expressed and purified protein is properly folded and has increased α-helical content compared to the C2AB fragment alone. Post-translational modifications of Syt1 were analyzed by mass spectrometry, revealing the same modifications of Syt1 that were previously described for Syt1 purified from brain extract or mammalian cell lines, along with a novel modification of Syt1, tyrosine nitration. A lipid binding screen with both full-length Syt1 and the C2AB fragments of Syt1 and Syt3 isoforms revealed new Syt1−lipid interactions. These results suggest a conserved lipid binding mechanism in which Ca2+-independent interactions are mediated via a lysine rich region of the C2B domain while Ca2+-dependent interactions are mediated via the Ca2+-binding loops

    Murine Gamma-herpesvirus Immortalization of Fetal Liver-Derived B Cells Requires both the Viral Cyclin D Homolog and Latency-Associated Nuclear Antigen

    Get PDF
    Human gammaherpesviruses are associated with the development of lymphoproliferative diseases and B cell lymphomas, particularly in immunosuppressed hosts. Understanding the molecular mechanisms by which human gammaherpesviruses cause disease is hampered by the lack of convenient small animal models to study them. However, infection of laboratory strains of mice with the rodent virus murine gammaherpesvirus 68 (MHV68) has been useful in gaining insights into how gammaherpesviruses contribute to the genesis and progression of lymphoproliferative lesions. In this report we make the novel observation that MHV68 infection of murine day 15 fetal liver cells results in their immortalization and differentiation into B plasmablasts that can be propagated indefinitely in vitro, and can establish metastasizing lymphomas in mice lacking normal immune competence. The phenotype of the MHV68 immortalized B cell lines is similar to that observed in lymphomas caused by KSHV and resembles the favored phenotype observed during MHV68 infection in vivo. All established cell lines maintained the MHV68 genome, with limited viral gene expression and little or no detectable virus production - although virus reactivation could be induced upon crosslinking surface Ig. Notably, transcription of the genes encoding the MHV68 viral cyclin D homolog (v-cyclin) and the homolog of the KSHV latency-associated nuclear antigen (LANA), both of which are conserved among characterized Îł2-herpesviruses, could consistently be detected in the established B cell lines. Furthermore, we show that the v-cyclin and LANA homologs are required for MHV68 immortalization of murine B cells. In contrast the M2 gene, which is unique to MHV68 and plays a role in latency and virus reactivation in vivo, was dispensable for B cell immortalization. This new model of gammaherpesvirus-driven B cell immortalization and differentiation in a small animal model establishes an experimental system for detailed investigation of the role of gammaherpesvirus gene products and host responses in the genesis and progression of gammaherpesvirus-associated lymphomas, and presents a convenient system to evaluate therapeutic modalities

    Murid Herpesvirus-4 Exploits Dendritic Cells to Infect B Cells

    Get PDF
    Dendritic cells (DCs) play a central role in initiating immune responses. Some persistent viruses infect DCs and can disrupt their functions in vitro. However, these viruses remain strongly immunogenic in vivo. Thus what role DC infection plays in the pathogenesis of persistent infections is unclear. Here we show that a persistent, B cell-tropic gamma-herpesvirus, Murid Herpesvirus-4 (MuHV-4), infects DCs early after host entry, before it establishes a substantial infection of B cells. DC-specific virus marking by cre-lox recombination revealed that a significant fraction of the virus latent in B cells had passed through a DC, and a virus attenuated for replication in DCs was impaired in B cell colonization. In vitro MuHV-4 dramatically altered the DC cytoskeleton, suggesting that it manipulates DC migration and shape in order to spread. MuHV-4 therefore uses DCs to colonize B cells

    Origine et développement du combustible Uranium-MolybdÚne (U-Mo)

    No full text
    Historiquement, la plupart des réacteurs expérimentaux, en particulier les Réacteurs de Test et de Recherche, producteurs de hauts flux neutroniques, ont utilisé du combustible métallique à haut enrichissement en U235 (>90%). La politique actuelle est de plafonner l'enrichissement en U235 à 20% (objectif de non-prolifération). AprÚs une premiÚre génération de combustible enrichi à 19.75% en U235 de type siliciure non retraitable, un consensus s'est dégagé au niveau international autour d'une nouvelle génération de combustible enrichi à 19.75% en U235, le combustible U-Mo (uranium - molybdÚne). Ce combustible permet de maintenir, voire d'améliorer, les performances actuelles des réacteurs tout en garantissant une fin de cycle acceptable (combustible retraitable). CEA, COGEMA, CERCA, FRAMATOME et TECHNICATOME ont regroupé leurs moyens techniques, financiers et leur savoir-faire pour développer en commun ce nouveau combustible U-Mo. Il est destiné aux réacteurs existants déjà convertis ou devant se convertir à l'uranium faiblement enrichi (en France, en Allemagne, au Japon, en SuÚde, ...) ainsi qu'aux nouveaux réacteurs tels que le RJH en France ou RRR en Australie. Ce programme de R& D démarré en 1999 est conduit en cohérence avec les travaux réalisés aux USA par l'Argonne National Laboratory. Compte tenu de la nécessité impérieuse pour les réacteurs de disposer en 2006 de ce nouveau combustible, seul à offrir une véritable solution de fin de cycle, l'objectif du groupe U-Mo français est de terminer la R& D et la qualification du combustible en 2005
    corecore