96 research outputs found
Cytokine Profiles of Stimulated Blood Lymphocytes in Asthmatic and Healthy Adolescents Cross the School Year
T cell cytokines play an important role in mediating airway inflammation in asthma. The predominance of a Th2 cytokine profile, particularly interleukin (IL)-4 and IL-5, is associated with the pathogenesis and course of asthma. The aim of this study was to test the hypothesis that a stressful life event alters the pattern of cytokine release in asthmatic individuals. Thirteen healthy controls and 21 asthmatic adolescents gave blood samples three times over a semester: midsemester, during the week of final examinations, and 2-3 weeks after examinations. Interferon-γ (IFN-γ), IL-2, IL-4, and IL-5 were measured from supernatants of cells stimulated with PHA/PMA for 24 h. Cells from asthmatic subjects released significantly more IL-5 during the examination and postexamination periods, whereas cells from healthy controls released significantly more IL-2 during the midsemester and examination periods, thereby indicating a bias for a Th2-like pattern in asthmatics and a Th 1-like pattern in healthy controls. IL-4 and IL-5 production showed a marked decrease during and after examinations in healthy controls, whereas this decline was absent in asthmatics. The ratios of IFN-γ:IL-4 and IFN-γ:IL-5 also revealed significant changes in the profile of cytokine release across the semester. These results indicate differential cytokine responses in asthmatics that may become pronounced during periods of cellular activation
HSD3B1 genotype identifies glucocorticoid responsiveness in severe asthma
Asthma resistance to glucocorticoid treatment is a major health problem with unclear etiology. Glucocorticoids inhibit adrenal androgen production. However, androgens have potential benefits in asthma. HSD3B1 encodes for 3β-hydroxysteroid dehydrogenase-1 (3β-HSD1), which catalyzes peripheral conversion from adrenal dehydroepiandrosterone (DHEA) to potent androgens and has a germline missense-encoding polymorphism. The adrenal restrictive HSD3B1(1245A) allele limits conversion, whereas the adrenal permissive HSD3B1(1245C) allele increases DHEA metabolism to potent androgens. In the Severe Asthma Research Program (SARP) III cohort, we determined the association between DHEA-sulfate and percentage predicted forced expiratory volume in 1 s (FEV1PP). HSD3B1(1245) genotypes were assessed, and association between adrenal restrictive and adrenal permissive alleles and FEV1PP in patients with (GC) and without (noGC) daily oral glucocorticoid treatment was determined (n = 318). Validation was performed in a second cohort (SARP I&II; n = 184). DHEA-sulfate is associated with FEV1PP and is suppressed with GC treatment. GC patients homozygous for the adrenal restrictive genotype have lower FEV1PP compared with noGC patients (54.3% vs. 75.1%; P < 0.001). In patients with the homozygous adrenal permissive genotype, there was no FEV1PP difference in GC vs. noGC patients (73.4% vs. 78.9%; P = 0.39). Results were independently confirmed: FEV1PP for homozygous adrenal restrictive genotype in GC vs. noGC is 49.8 vs. 63.4 (P < 0.001), and for homozygous adrenal permissive genotype, it is 66.7 vs. 67.7 (P = 0.92). The adrenal restrictive HSD3B1(1245) genotype is associated with GC resistance. This effect appears to be driven by GC suppression of 3β-HSD1 substrate. Our results suggest opportunities for prediction of GC resistance and pharmacologic intervention
Recommended from our members
Peroxidase-mediated mucin cross-linking drives pathologic mucus gel formation in IL-13-stimulated airway epithelial cells
Mucus plugs occlude airways to obstruct airflow in asthma. Studies in patients and in mouse models show that mucus plugs occur in the context of type 2 inflammation, and studies in human airway epithelial cells (HAECs) show that IL-13-activated cells generate pathologic mucus independently of immune cells. To determine how HAECs autonomously generate pathologic mucus, we used a magnetic microwire rheometer to characterize the viscoelastic properties of mucus secreted under varying conditions. We found that normal HAEC mucus exhibited viscoelastic liquid behavior and that mucus secreted by IL-13-activated HAECs exhibited solid-like behavior caused by mucin cross-linking. In addition, IL-13-activated HAECs shows increased peroxidase activity in apical secretions, and an overlaid thiolated polymer (thiomer) solution shows an increase in solid behavior that was prevented by peroxidase inhibition. Furthermore, gene expression for thyroid peroxidase (TPO), but not lactoperoxidase (LPO), was increased in IL-13-activated HAECs and both TPO and LPO catalyze the formation of oxidant acids that cross-link thiomer solutions. Finally, gene expression for TPO in airway epithelial brushings was increased in patients with asthma with high airway mucus plug scores. Together, our results show that IL-13-activated HAECs autonomously generated pathologic mucus via peroxidase-mediated cross-linking of mucin polymers
Detrimental Effects of Environmental Tobacco Smoke in Relation to Asthma Severity
Background: Environmental tobacco smoke (ETS) has adverse effects on the health of asthmatics, however the harmful consequences of ETS in relation to asthma severity are unknown. Methods: In a multicenter study of severe asthma, we assessed the impact of ETS exposure on morbidity, health care utilization and lung functions; and activity of systemic superoxide dismutase (SOD), a potential oxidative target of ETS that is negatively associated with asthma severity. Findings: From 2002-2006, 654 asthmatics (non-severe 366, severe 288) were enrolled, among whom 109 non-severe and 67 severe asthmatics were routinely exposed to ETS as ascertained by history and validated by urine cotinine levels. ETS-exposure was associated with lower quality of life scores; greater rescue inhaler use; lower lung function; greater bronchodilator responsiveness; and greater risk for emergency room visits, hospitalization and intensive care unit admission. ETS-exposure was associated with lower levels of serum SOD activity, particularly in asthmatic women of African heritage. Interpretation: ETS-exposure of asthmatic individuals is associated with worse lung function, higher acuity of exacerbations, more health care utilization, and greater bronchial hyperreactivity. The association of diminished systemic SOD activity to ETS exposure provides for the first time a specific oxidant mechanism by which ETS may adversely affect patients with asthma. © 2011 Comhair et al
The effect of BPIFA1/SPLUNC1 genetic variation on its expression and function in asthmatic airway epithelium
Bacterial permeability family member A1 (BPIFA1), also known as short palate, lung, and nasal epithelium clone 1 (SPLUNC1), is a protein involved in the antiinflammatory response. The goal of this study was to determine whether BPIFA1 expression in asthmatic airways is regulated by genetic variations, altering epithelial responses to type 2 cytokines (e.g., IL-13). Nasal epithelial cells from patients with mild to severe asthma were collected from the National Heart, Lung. and Blood Institute Severe Asthma Research Program centers, genotyped for rs750064, and measured for BPIFA1. To determine the function of rs750064, cells were cultured at air-liquid interface and treated with 11-13 with or without recombinant human BPIFA1 (rhBPIFA1). Noncultured nasal cells with the rs750064 CC genotype had significantly less BPIFA1 mRNA expression than the CT and TT genotypes. Cultured CC versus CT and TT cells without stimulation maintained less BPIFA1 expression. With IL-13 treatment, CC genotype cells secreted more eotaxin-3 than CT and TT genotype cells. Also, rhBPIFA1 reduced IL-13-mediated eotaxin-3. BPIFA1 mRNA levels negatively correlated with serum IgE and fractional exhaled nitric oxide. Baseline FEV1% levels were lower in the asthma patients with the CC genotype (n = 1,016). Our data suggest that less BPIFA1 in asthma patients with the CC allele may predispose them to greater eosinophilic inflammation, which could be attenuated by rhBPIFA1 protein therapy.NIH/NHLBI [R01HL125128, U10HL109257, UL1TR00448, U10HL109168]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Asthma Is More Severe in Older Adults
Background: Severe asthma occurs more often in older adult patients. We hypothesized that the greater risk for severe asthma in older individuals is due to aging, and is independent of asthma duration. Methods: This is a cross-sectional study of prospectively collected data from adult participants (N=1130; 454 with severe asthma) enrolled from 2002 – 2011 in the Severe Asthma Research Program. Results: The association between age and the probability of severe asthma, which was performed by applying a Locally Weighted Scatterplot Smoother, revealed an inflection point at age 45 for risk of severe asthma. The probability of severe asthma increased with each year of life until 45 years and thereafter increased at a much slower rate. Asthma duration also increased the probability of severe asthma but had less effect than aging. After adjustment for most comorbidities of aging and for asthma duration using logistic regression, asthmatics older than 45 maintained the greater probability of severe asthma [OR: 2.73 (95 CI: 1.96; 3.81)]. After 45, the age-related risk of severe asthma continued to increase in men, but not in women. Conclusions: Overall, the impact of age and asthma duration on risk for asthma severity in men and women is greatest over times of 18-45 years of age; age has a greater effect than asthma duration on risk of severe asthma
Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways
Background
The Chr17q12-21.2 region is the strongest and most consistently associated region with asthma susceptibility. The functional genes or single nucleotide polymorphisms (SNPs) are not obvious due to linkage disequilibrium.
Objectives
We sought to comprehensively investigate whole-genome sequence and RNA sequence from human bronchial epithelial cells to dissect functional genes/SNPs for asthma severity in the Severe Asthma Research Program.
Methods
Expression quantitative trait loci analysis (n = 114), correlation analysis (n = 156) of gene expression and asthma phenotypes, and pathway analysis were performed in bronchial epithelial cells and replicated. Genetic association for asthma severity (426 severe vs 531 nonsevere asthma) and longitudinal asthma exacerbations (n = 273) was performed.
Results
Multiple SNPs in gasdermin B (GSDMB) associated with asthma severity (odds ratio, >1.25) and longitudinal asthma exacerbations (P < .05). Expression quantitative trait loci analyses identified multiple SNPs associated with expression levels of post-GPI attachment to proteins 3, GSDMB, or gasdermin A (3.1 × 10−9 < P < 1.8 × 10−4). Higher expression levels of GSDMB correlated with asthma and greater number of exacerbations (P < .05). Expression levels of GSDMB correlated with genes involved in IFN signaling, MHC class I antigen presentation, and immune system pathways (false-discovery rate–adjusted P < .05). rs1031458 and rs3902920 in GSDMB colocalized with IFN regulatory factor binding sites and associated with GSDMB expression, asthma severity, and asthma exacerbations (P < .05).
Conclusions
By using a unique set of gene expression data from lung cells obtained using bronchoscopy from comprehensively characterized subjects with asthma, we show that SNPs in GSDMB associated with asthma severity, exacerbations, and GSDMB expression levels. Furthermore, its expression levels correlated with asthma exacerbations and antiviral pathways. Thus, GSDMB is a functional gene for both asthma susceptibility and severity
Dissection of the Hyperadhesive Phenotype of Airway Eosinophils in Asthma
Asthma is characterized by appearance of eosinophils in the airway. Eosinophils purified from the airway 48 h after segmental antigen challenge are described as exhibiting greater adhesion to albumin-coated surfaces via an unidentified β2 integrin and increased expression of αMβ2 (CD11b/18) compared with purified blood eosinophils. We have investigated the determinants of this hyperadhesive phenotype. Airway eosinophils exhibited increased reactivity with the CBRM1/5 anti-αM activation-sensitive antibody as well as enhanced adhesion to VCAM-1 (CD106) and diverse ligands, including albumin, ICAM-1 (CD54), fibrinogen, and vitronectin. Purified blood eosinophils did not adhere to the latter diverse ligands. Enhanced adhesion of airway eosinophils was blocked by anti-αMβ2. Podosomes, structures implicated in cell movement and proteolysis of matrix proteins, were larger and more common on airway eosinophils adherent to VCAM-1 when compared with blood eosinophils. Incubation of blood eosinophils with IL-5 replicated the phenotype of airway eosinophils. That is, IL-5 enhanced recognition of αM by CBRM1/5; stimulated αMβ2-mediated adhesion to VCAM-1, albumin, ICAM-1, fibrinogen, and vitronectin; and increased podosome formation on VCAM-1. Thus, the hyperadhesion of airway eosinophils after antigen challenge is mediated by upregulated and activated αMβ2
- …