16 research outputs found

    Maternal Dietary Supplementation with Oligofructose-Enriched Inulin in Gestating/Lactating Rats Preserves Maternal Bone and Improves Bone Microarchitecture in Their Offspring

    Get PDF
    This study received financial support from Abbott Nutrition, a commercial company, and coauthors PBV, MM, JMLP and RR are employees of Abbott Nutrition. There are two patents related with the data presented (EP 2502507 A1 and EP 2745706 A1).Some of these results were presented in the 7th World Congress of DOHaD (2011) and in the World Congress on Osteoporosis, Osteoarthritis and Musculoskeletal Disease (WCO-IOF-ESCEO) (2014).Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength.This study was funded by Abbott Nutrition R&D, and co-authors PBV, MM, JMLP and RR receive salary from Abbott Nutrition

    Vitamin D Deficiency and Its Health Consequences in Africa

    Get PDF
    Africa is heterogeneous in latitude, geography, climate, food availability, religious and cultural practices, and skin pigmentation. It is expected, therefore, that prevalence of vitamin D deficiency varies widely, in line with influences on skin exposure to UVB sunshine. Furthermore, low calcium intakes and heavy burden of infectious disease common in many countries may increase vitamin D utilization and turnover. Studies of plasma 25OHD concentration indicate a spectrum from clinical deficiency to values at the high end of the physiological range; however, data are limited. Representative studies of status in different countries, using comparable analytical techniques, and of relationships between vitamin D status and risk of infectious and chronic diseases relevant to the African context are needed. Public health measures to secure vitamin D adequacy cannot encompass the whole continent and need to be developed locally

    Use of bioelectrical impedance analysis to assess body composition in rural Gambian children.

    No full text
    OBJECTIVE: To validate the Tanita BC-418MA Segmental Body Composition Analyser and four-site skinfold measurements for the prediction of total body water (TBW), percentage fat-free mass (%FFM) and percentage body fat (%BF) in a population of rural Gambian children. SUBJECTS/METHODS: One hundred and thirty-three healthy Gambian children (65 males and 68 females). FFM estimated by the inbuilt equations supplied with the Tanita system was assessed by comparison with deuterium oxide dilution and novel prediction equations were produced. Deuterium oxide dilution was also used to develop equations for %BF based on four-site skinfolds (biceps, triceps, subscapular and suprailiac). RESULTS: The inbuilt equations underestimated FFM compared to deuterium oxide dilution in all the sex and age categories (P<0.003), with greater accuracy in younger children and in males. The best prediction of %FFM was obtained from the variables height, weight, sex, impedance, age and four skinfold thickness measurements (adjusted R(2)=0.84, root mean square error (MSE)=2.07%). CONCLUSIONS: These data suggest that the Tanita instrument may be a reliable field assessment technique in African children, when using population and gender-specific equations to convert impedance measurements into estimates of FFM
    corecore