22 research outputs found

    Handling method affects measures of anxiety, but not chronic stress in mice.

    Get PDF
    Studies in mice have shown that less aversive handling methods (e.g. tunnel or cup handling) can reduce behavioural measures of anxiety in comparison to picking mice up by their tail. Despite such evidence, tail handling continues to be used routinely. Besides resistance to change accustomed procedures, this may also be due to the fact that current evidence in support of less aversive handling is mostly restricted to effects of extensive daily handling, which may not apply to routine husbandry practices. The aim of our study was to assess whether, and to what extent, different handling methods during routine husbandry induce differences in behavioural and physiological measures of stress in laboratory mice. To put the effects of handling method in perspective with chronic stress, we compared handling methods to a validated paradigm of unpredictable chronic mild stress (UCMS). We housed mice of two strains (Balb/c and C57BL/6) and both sexes either under standard laboratory conditions (CTRL) or under UCMS. Half of the animals from each housing condition were tail handled and half were tunnel handled twice per week, once during a cage change and once for a routine health check. We found strain dependent effects of handling method on behavioural measures of anxiety: tunnel handled Balb/c mice interacted with the handler more than tail handled conspecifics, and tunnel handled CTRL mice showed increased open arm exploration in the elevated plus-maze. Mice undergoing UCMS showed increased plasma corticosterone levels and reduced sucrose preference. However, we found no effect of handling method on these stress-associated measures. Our results therefore indicate that routine tail handling can affect behavioural measures of anxiety, but may not be a significant source of chronic husbandry stress. Our results also highlight strain dependent responses to handling methods

    Sex and Estrous Cycle Effects on Anxiety- and Depression-Related Phenotypes in a Two-Hit Developmental Stress Model

    Get PDF
    Stress during sensitive developmental periods can adversely affect physical and psychological development and contribute to later-life mental disorders. In particular, adverse experiences during childhood dramatically increase the risk for the development of depression and anxiety disorders. Although women of reproductive age are twice as likely to develop anxiety and depression than men of the corresponding age, little is known about sex-specific factors that promote or protect against the development of psychopathology. To examine potential developmental mechanisms driving sex disparity in risk for anxiety and depression, we established a two-hit developmental stress model including maternal separation in early life followed by social isolation in adolescence. Our study shows complex interactions between early-life and adolescent stress, between stress and sex, and between stress and female estrogen status in shaping behavioral phenotypes of adult animals. In general, increased locomotor activity and body weight reduction were the only two phenotypes where two stressors showed synergistic activity. In terms of anxiety- and depression-related phenotypes, single exposure to early-life stress had the most significant impact and was female-specific. We show that early-life stress disrupts the protective role of estrogen in females, and promotes female vulnerability to anxiety- and depression-related phenotypes associated with the low-estrogenic state. We found plausible transcriptional and epigenetic alterations in psychiatric risk genes, Nr3c1 and Cacna1c, that likely contributed to the stress-induced behavioral effects. In addition, two general transcriptional regulators, Egr1 and Dnmt1, were found to be dysregulated in maternally-separated females and in animals exposed to both stressors, respectively, providing insights into possible transcriptional mechanisms that underlie behavioral phenotypes. Our findings provide a novel insight into developmental risk factors and biological mechanisms driving sex differences in depression and anxiety disorders, facilitating the search for more effective, sex-specific treatments for these disorders

    Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs

    Get PDF
    Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysome

    Reliability of common mouse behavioural tests of anxiety: A systematic review and meta-analysis on the effects of anxiolytics.

    Get PDF
    The validity of widely used rodent behavioural tests of anxiety has been questioned, as they often fail to produce consistent results across independent replicate studies. In this study, we assessed the sensitivity of common behavioural tests of anxiety in mice to detect anxiolytic effects of drugs prescribed to treat anxiety in humans. We conducted a pre-registered systematic review of 814 studies reporting effects of 25 anxiolytic compounds using common behavioural tests for anxiety. Meta-analyses of effect sizes of treatments showed that only two out of 17 commonly used test measures reliably detected effects of anxiolytic compounds. We report considerable between-study variation in size and even direction of effects of most anxiolytics on most outcome variables. Our findings indicate a general lack of sensitivity of those behavioural tests and cast serious doubt on both construct and predictive validity of most of these tests. In view of scientifically valid and ethically responsible research, we call for a revision of behavioural tests of anxiety in mice and the development of more predictive tests

    Femtomolar detection of the heart failure biomarker NT-proBNP in artificial saliva using an immersible liquid-gated aptasensor with reduced graphene oxide

    Full text link
    Measuring NT-proBNP biomarker is recommended for preliminary diagnostics of the heart failure. Recent studies suggest a possibility of early screening of biomarkers in saliva for non-invasive identification of cardiac diseases at the point-of-care. However, NT-proBNP concentrations in saliva can be thousand time lower than in blood plasma, going down to pg/mL level. To reach this level, we developed a label-free aptasensor based on a liquid-gated field effect transistor using a film of reduced graphene oxide monolayer (rGO-FET) with immobilized NT-proBNP specific aptamer. We found that, depending on ionic strength of tested solutions, there were different levels of correlation in responses of electrical parameters of the rGO-FET aptasensor, namely, the Dirac point shift and transconductance change. The correlation in response to NT-proBNP was high for 1.6 mM phosphate-buffered saline (PBS) and zero for 16 mM PBS in a wide range of analyte concentrations, varied from 1 fg/mL to 10 ng/mL. The effects of transconductance and Dirac point shift in PBS solutions of different concentrations are discussed. The biosensor exhibited a high sensitivity for both transconductance (2 uS/decade) and Dirac point shift (2.3 mV/decade) in diluted PBS with the linear range from 10 fg/mL to 1 pg/mL. The aptasensor performance has been also demonstrated in undiluted artificial saliva with the achieved limit of detection down to 41 fg/mL (~4.6 fM)

    The rearing environment persistently modulates mouse phenotypes from the molecular to the behavioural level.

    Get PDF
    The phenotype of an organism results from its genotype and the influence of the environment throughout development. Even when using animals of the same genotype, independent studies may test animals of different phenotypes, resulting in poor replicability due to genotype-by-environment interactions. Thus, genetically defined strains of mice may respond differently to experimental treatments depending on their rearing environment. However, the extent of such phenotypic plasticity and its implications for the replicability of research findings have remained unknown. Here, we examined the extent to which common environmental differences between animal facilities modulate the phenotype of genetically homogeneous (inbred) mice. We conducted a comprehensive multicentre study, whereby inbred C57BL/6J mice from a single breeding cohort were allocated to and reared in 5 different animal facilities throughout early life and adolescence, before being transported to a single test laboratory. We found persistent effects of the rearing facility on the composition and heterogeneity of the gut microbial community. These effects were paralleled by persistent differences in body weight and in the behavioural phenotype of the mice. Furthermore, we show that environmental variation among animal facilities is strong enough to influence epigenetic patterns in neurons at the level of chromatin organisation. We detected changes in chromatin organisation in the regulatory regions of genes involved in nucleosome assembly, neuronal differentiation, synaptic plasticity, and regulation of behaviour. Our findings demonstrate that common environmental differences between animal facilities may produce facility-specific phenotypes, from the molecular to the behavioural level. Furthermore, they highlight an important limitation of inferences from single-laboratory studies and thus argue that study designs should take environmental background into account to increase the robustness and replicability of findings

    The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders

    No full text
    Prenatal adverse environments, such as maternal stress, toxicological exposures, and viral infections, can disrupt normal brain development and contribute to neurodevelopmental disorders, including schizophrenia, depression, and autism. Increasing evidence shows that these short- and long-term effects of prenatal exposures on brain structure and function are mediated by epigenetic mechanisms. Animal studies demonstrate that prenatal exposure to stress, toxins, viral mimetics, and drugs induces lasting epigenetic changes in the brain, including genes encoding glucocorticoid receptor (Nr3c1) and brain-derived neurotrophic factor (Bdnf). These epigenetic changes have been linked to changes in brain gene expression, stress reactivity, and behavior, and often times, these effects are shown to be dependent on the gestational window of exposure, sex, and exposure level. Although evidence from human studies is more limited, gestational exposure to environmental risks in humans is associated with epigenetic changes in peripheral tissues, and future studies are required to understand whether we can use peripheral biomarkers to predict neurobehavioral outcomes. An extensive research effort combining well-designed human and animal studies, with comprehensive epigenomic analyses of peripheral and brain tissues over time, will be necessary to improve our understanding of the epigenetic basis of neurodevelopmental disorders

    Cell type-specific chromatin accessibility analysis in the mouse and human brain

    No full text
    The Assay for Transposase Accessible Chromatin by sequencing (ATAC-seq) is becoming popular in the neuroscience field where chromatin regulation is thought to be involved in neurodevelopment, activity-dependent gene regulation, hormonal and environmental responses, and pathophysiology of neuropsychiatric disorders. The advantages of using ATAC-seq include a small amount of material needed, fast protocol, and the ability to capture a range of gene regulatory elements with a single assay. With increasing interest in chromatin research, it is an imperative to have feasible, reliable assays that are compatible with a range of neuroscience study designs. Here we tested three protocols for neuronal chromatin accessibility analysis, including a varying brain tissue freezing method followed by fluorescence-activated nuclei sorting (FANS) and ATAC-seq. Our study shows that the cryopreservation method impacts the number of open chromatin regions identified from frozen brain tissue using ATAC-seq. However, we show that all protocols generate consistent and robust data and enable the identification of functional regulatory elements in neuronal cells. Our study implies that the broad biological interpretation of chromatin accessibility data is not significantly affected by the freezing condition. We also reveal additional challenges of doing chromatin analysis on post-mortem human brain tissue. Overall, ATAC-seq coupled with FANS is a powerful method to capture cell-type-specific chromatin accessibility information in mouse and human brain. Our study provides alternative brain preservation methods that generate high-quality ATAC-seq data while fitting in different study designs, and further encourages the use of this method to uncover the role of epigenetic (dys)regulation in the brain
    corecore