24 research outputs found
Direct Graphene Growth on Insulator
Fabrication of graphene devices is often hindered by incompatibility between
the silicon technology and the methods of graphene growth. Exfoliation from
graphite yields excellent films but is good mainly for research. Graphene grown
on metal has a technological potential but requires mechanical transfer. Growth
by SiC decomposition requires a temperature budget exceeding the technological
limits. These issues could be circumvented by growing graphene directly on
insulator, implying Van der Waals growth. During growth, the insulator acts as
a support defining the growth plane. In the device, it insulates graphene from
the Si substrate. We demonstrate planar growth of graphene on mica surface.
This was achieved by molecular beam deposition above 600{\deg}C. High
resolution Raman scans illustrate the effect of growth parameters and substrate
topography on the film perfection. Ab initio calculations suggest a growth
model. Data analysis highlights the competition between nucleation at surface
steps and flat surface. As a proof of concept, we show the evidence of electric
field effect in a transistor with a directly grown channel.Comment: 13 pages, 6 figure
Nucleation and growth of HfO layers on graphene by CVD
A seed layer-free growth of HfO on commercially available CVD graphene
from various suppliers is investigated. It is revealed that the samples of
monolayer graphene transferred from Cu to SiO/Si substrates have different
coverage with bi- and multi-layer graphene islands. We find that the
distribution and number of such islands impact the nucleation and growth of
HfO by CVD. In particular, we show that the edges and surface of densely
distributed bi-layer graphene islands provide good nucleation sites for
conformal CVD HfO layers. Dielectric constant of 16 is extracted from
measurements on graphene- HfO-TiN capacitors.Comment: 4 pages, 6 figure
A Graphene-based Hot Electron Transistor
We experimentally demonstrate DC functionality of graphene-based hot electron
transistors, which we call Graphene Base Transistors (GBT). The fabrication
scheme is potentially compatible with silicon technology and can be carried out
at the wafer scale with standard silicon technology. The state of the GBTs can
be switched by a potential applied to the transistor base, which is made of
graphene. Transfer characteristics of the GBTs show ON/OFF current ratios
exceeding 50.000.Comment: 18 pages, 6 figure
Recommended from our members
Control of etch pit formation for epitaxial growth of graphene on germanium
Graphene epitaxy on germanium by chemical vapor deposition is a promising approach to integrate graphene into microelectronics, but the synthesis is still accompanied by several challenges such as the high process temperature, the reproducibility of growth, and the formation of etch pits during the process. We show that the substrate cleaning by preannealing in molecular hydrogen, which is crucial to successful and reproducible graphene growth, requires a high temperature and dose. During both substrate cleaning and graphene growth, etch pits can develop under certain conditions and disrupt the synthesis process. We explain the mechanisms how these etch pits may form by preferential evaporation of substrate, how substrate topography is related to the state of the cleaning process, and how etch pit formation during graphene growth can be controlled by choice of a sufficiently high precursor flow. Our study explains how graphene can be grown reliably on germanium at high temperature and thereby lays the foundation for further optimization of the growth process. © 2019 Author(s)
Oxide Precipitate Nucleation via Coherent Seed -Oxide Phases
Abstract not Available.</jats:p
Simulation of vacancy agglomeration based on ab initio calculations and comparison with experimental results
Graphene for Silicon Microelectronics: Ab Initio Modeling of Graphene Nucleation and Growth
The Prs<sub>2</sub>O<sub>3</sub> /Si(001) Interface: a Mixed Si-Pr Oxide
AbstractWe studied the Pr2O3/Si(001) interface by a non-destructive depth profiling using synchrotron radiation and photo-electron spectroscopy (SR-PES) at the undulator beam line U49/2-PGM2 and ab initio calculations. Our results provide evidence that a chemical reactive interface exists consisting of a mixed Si-Pr oxide such as (Pr2O3)(SiO)x(SiO2)y. There is no formation of neither an interfacial SiO2 nor interfacial silicide: all Si-Pr bonds are oxidized and all SiO4 units dissolve in the Pr oxide. Under ultrahigh vacuum conditions, silicide formation is observed only when the film is heated above 800°C in vacuum. Interfacial silicates like (Pr2O3)(SiO)x(SiO2)y are promising high-k dielectric materials, e.g., because they represent incremental modification of SiO2 films by Pr ions, so that the interface characteristics can be similar to Si-SiO2 interface properties. The Pr silicate system formed in a natural way at the interface between Si(001) and Pr2O3 offers an increased flexibility towards integration of Pr2O3 into future CMOS technologies.</jats:p
