11,148 research outputs found
Analysis of Extensive [FeFe] Hydrogenase Gene Diversity Within the Gut Microbiota of Insects Representing Five Families of Dictyoptera
We have designed and utilized degenerate primers in the phylogenetic analysis of [FeFe] hydrogenase gene diversity in the gut ecosystems of roaches and lower termites. H2 is an important free intermediate in the breakdown of wood by termite gut microbial communities, reaching concentrations in some species exceeding those measured for any other biological system. The primers designed target with specificity the largest group of enzymatic H domain proteins previously identified in a termite gut metagenome. “Family 3” hydrogenase sequences were amplified from the guts of lower termites, Incisitermes minor, Zootermopsis nevadensis, and Reticulitermes hesperus, and two roaches, Cryptocercus punctulatus and Periplaneta americana. Subsequent analyses revealed that all termite and Cryptocercus sequences were phylogenetically distinct from non-termiteassociated hydrogenases available from public databases. The abundance of unique sequence operational taxonomic units (as many as 21 from each species) underscores the previously demonstrated physiological importance of H2 to the gut ecosystems of these wood-feeding insects. The diversity of sequences observed might be reflective of multiple niches that the enzymes have been evolved to accommodate. Sequences cloned from Cryptocercus and the lower termite samples, all of which are wood feeding insects, clustered closely with one another in phylogenetic analyses to the exclusion of alleles from P. americana, an omnivorous cockroach, also cloned during this study. We present primers targeting a family of termite gut [FeFe] hydrogenases and provide results that are consistent with a pivotal role for hydrogen in the termite gut ecosystem and point toward
unique evolutionary adaptations to the gut ecosystem
Intercalation events visualized in single microcrystals of graphite.
The electrochemical intercalation of layered materials, particularly graphite, is fundamental to the operation of rechargeable energy-storage devices such as the lithium-ion battery and the carbon-enhanced lead-acid battery. Intercalation is thought to proceed in discrete stages, where each stage represents a specific structure and stoichiometry of the intercalant relative to the host. However, the three-dimensional structures of the stages between unintercalated and fully intercalated are not known, and the dynamics of the transitions between stages are not understood. Using optical and scanning transmission electron microscopy, we video the intercalation of single microcrystals of graphite in concentrated sulfuric acid. Here we find that intercalation charge transfer proceeds through highly variable current pulses that, although directly associated with structural changes, do not match the expectations of the classical theories. Evidently random nanoscopic defects dominate the dynamics of intercalation
Genes for selenium dependent and independent formate dehydrogenase in the gut microbial communities of three lower, wood-feeding termites and a wood-feeding roach
The bacterial Wood-Ljungdahl pathway for CO_2-reductive acetogenesis is important for the nutritional mutualism occurring between
wood-feeding insects and their hindgut microbiota. A key step in this
pathway is the reduction of CO_2 to formate, catalysed by the enzyme
formate dehydrogenase (FDH). Putative selenocysteine- (Sec) and
cysteine- (Cys) containing paralogues of hydrogenase-linked FDH (FDH_H)
have been identified in the termite gut acetogenic spirochete,
Treponema primitia, but knowledge of their relevance in the termite gut
environment remains limited. In this study, we designed degenerate PCR
primers for FDH_H genes (fdhF) and assessed fdhF diversity in insect gut
bacterial isolates and the gut microbial communities of termites and
cockroaches. The insects examined herein represent three wood-feeding
termite families, Termopsidae, Kalotermitidae and Rhinotermitidae
(phylogenetically 'lower' termite taxa); the wood-feeding roach family
Cryptocercidae (the sister taxon to termites); and the omnivorous roach
family Blattidae. Sec and Cys FDH_H variants were identified in every
wood-feeding insect but not the omnivorous roach. Of 68 novel alleles
obtained from inventories, 66 affiliated phylogenetically with enzymes
from T. primitia. These formed two subclades (37 and 29 phylotypes)
almost completely comprised of Sec-containing and Cys-containing
enzymes respectively. A gut cDNA inventory showed transcription of both
variants in the termite Zootermopsis nevadensis (family Termopsidae).
The gene patterns suggest that FDH_H enzymes are important for the
CO_2-reductive metabolism of uncultured acetogenic treponemes and imply
that the availability of selenium, a trace element, shaped microbial
gene content in the last common ancestor of dictyopteran, wood-feeding
insects, and continues to shape it to this day
"Ultimate state" of two-dimensional Rayleigh-Benard convection between free-slip fixed temperature boundaries
Rigorous upper limits on the vertical heat transport in two dimensional
Rayleigh-Benard convection between stress-free isothermal boundaries are
derived from the Boussinesq approximation of the Navier-Stokes equations. The
Nusselt number Nu is bounded in terms of the Rayleigh number Ra according to
uniformly in the Prandtl number Pr. This Nusselt
number scaling challenges some theoretical arguments regarding the asymptotic
high Rayleigh number heat transport by turbulent convection.Comment: 4 page
Ground-based adaptive optics coronagraphic performance under closed-loop predictive control
The discovery of the exoplanet Proxima b highlights the potential for the
coming generation of giant segmented mirror telescopes (GSMTs) to characterize
terrestrial --- potentially habitable --- planets orbiting nearby stars with
direct imaging. This will require continued development and implementation of
optimized adaptive optics systems feeding coronagraphs on the GSMTs. Such
development should proceed with an understanding of the fundamental limits
imposed by atmospheric turbulence. Here we seek to address this question with a
semi-analytic framework for calculating the post-coronagraph contrast in a
closed-loop AO system. We do this starting with the temporal power spectra of
the Fourier basis calculated assuming frozen flow turbulence, and then apply
closed-loop transfer functions. We include the benefits of a simple predictive
controller, which we show could provide over a factor of 1400 gain in raw PSF
contrast at 1 on bright stars, and more than a factor of 30 gain on
an I = 7.5 mag star such as Proxima. More sophisticated predictive control can
be expected to improve this even further. Assuming a photon noise limited
observing technique such as High Dispersion Coronagraphy, these gains in raw
contrast will decrease integration times by the same large factors. Predictive
control of atmospheric turbulence should therefore be seen as one of the key
technologies which will enable ground-based telescopes to characterize
terrrestrial planets.Comment: Accepted to JATI
Internal heating driven convection at infinite Prandtl number
We derive an improved rigorous bound on the space and time averaged
temperature of an infinite Prandtl number Boussinesq fluid contained
between isothermal no-slip boundaries thermally driven by uniform internal
heating. A novel approach is used wherein a singular stable stratification is
introduced as a perturbation to a non-singular background profile, yielding the
estimate where is the heat Rayleigh
number. The analysis relies on a generalized Hardy-Rellich inequality that is
proved in the appendix
The CNN Effect: Mass Media and Humanitarian Aid
Mass media have great power and great responsibility. The CNN Effect states that when news media broadcast emotionally driven stories of human crisis, this provokes a major response by domestic audiences and political elites. This power to influence public policy can help save people from danger and even death. Acts of massive genocide were committed in Rwanda and Darfur. Because the media failed to act quickly and report accurately on these situations, many people lost their lives due to slow international reaction. News media need to learn from these tragic mistakes and never let genocide go on unnoticed by those who have the power to stop it
- …
