25 research outputs found

    Allopregnanolone Improves Locomotor Activity and Arousal in the Aged CGG Knock-in Mouse Model of Fragile X-Associated Tremor/Ataxia Syndrome.

    Get PDF
    Carriers of the fragile X premutation (PM) can develop a variety of early neurological symptoms, including depression, anxiety and cognitive impairment as well as being at risk for developing the late-onset fragile X-associated tremor/ataxia syndrome (FXTAS). The absence of effective treatments for FXTAS underscores the importance of developing efficacious therapies to reduce the neurological symptoms in elderly PM carriers and FXTAS patients. A recent preliminary study reported that weekly infusions of Allopregnanolone (Allop) may improve deficits in executive function, learning and memory in FXTAS patients. Based on this study we examined whether Allop would improve neurological function in the aged CGG knock-in (CGG KI) dutch mouse, B6.129P2(Cg)-Fmr

    Serum short chain fatty acids mediate hippocampal BDNF and correlate with decreasing neuroinflammation following high pectin fiber diet in mice

    Get PDF
    IntroductionDietary components, such as prebiotic fiber, are known to impact brain chemistry via the gut-brain axis. In particular, short chain fatty acids (SCFAs) generated from excessive soluble fiber consumption are thought to impact neuroimmune signaling and brain function through increased production of neurotropic factors. Given reports that high dietary fiber intake is associated with increased mental health and improved quality of life scores, we set out to identify whether changes in SCFA levels as a result of a high soluble fiber diet mediate hippocampal neuroinflammation and brain derived neurotrophic factor (BDNF) in mice.MethodsAdult male and female C57BL/6 mice were fed a 1-month high pectin fiber or cellulose-based control diet. Following 1 month of excessive pectin consumption, serum SCFAs were measured using gas chromatography–mass spectrometry (GC-MS) and hippocampal cytokines and BDNF were assessed via multiplex magnetic bead immunoassay.ResultsPectin-based fiber diet increased circulating acetic acid in both sexes, with no effect on propionic or butyric acid. In the hippocampus, a high fiber diet decreased TNFa, IL-1ß, IL-6, and IFNγ and increased BDNF levels. Furthermore, increased SCFA levels were inversely correlated with neuroinflammation in the hippocampus, with acetic acid revealed as a strong mediator of increased BDNF production.ConclusionCollectively, these findings highlight the beneficial effects of fiber-induced molecular changes in a brain region known to influence mood- and cognition-related behaviors. Dietary composition should be considered when developing mental health management plans for men and women with an emphasis on increasing soluble fiber intake

    Repeated allergic asthma in early versus late pregnancy differentially impacts offspring brain and behavior development

    No full text
    BackgroundStress during pregnancy and maternal inflammation are two common prenatal factors that impact offspring development. Asthma is the leading chronic condition complicating pregnancy and a common source of prenatal stress and inflammation.ObjectiveThe goal of this study was to characterize the developmental impact of repeated allergic asthma inflammation during pregnancy on offspring behavioral outcomes and brain inflammation.MethodsPregnant female C57BL/6 mice were sensitized with ovalbumin (OVA) or PBS vehicle control and then randomly assigned to receive daily aerosol exposures to the same OVA or PBS treatment during early, gestational days (GD) 2-GD9, or late pregnancy, GD10-GD17. Maternal sera were collected after the first and last aerosol induction regimen and measured for concentrations of corticosterone, anti-OVA IgE, and cytokine profiles. Juvenile male and female offspring were assessed for locomotor and social behaviors and later as adults assessed for anxiety-like, and marble burying behaviors using a series of behavioral tasks. Offspring brains were evaluated for region-specific differences in cytokine concentrations.ResultsIn early gestation, both PBS and OVA-exposed dams had similar serum corticosterone concentration at the start (GD2) and end (GD9) of daily aerosol inductions. Only OVA-exposed dams showed elevations in cytokines that imply a diverse and robust T helper cell-mediated immune response. Male offspring of early OVA-exposed dams showed decreases in open-arm exploration in the elevated plus maze and increased marble burying without concomitant changes in locomotor activity or social interactions. These behavioral deficits in early OVA-exposed male offspring were associated with lower concentrations of G-CSF, IL-4, IL-7, IFNγ, and TNFα in the hypothalamus. In late gestation, both PBS and OVA-exposed dams had increased corticosterone levels at the end of daily aerosol inductions (GD17) compared to at the start of inductions (GD10). Male offspring from both PBS and OVA-exposed dams in late gestation showed similar decreases in open arm exploration on the elevated plus maze compared to OVA male offspring exposed in early gestation. No behavioral differences were present in female offspring across all treatment groups. However, females of dams exposed to OVA during early gestation displayed similar reductions as males in hypothalamic G-CSF, IL-7, IL-4, and IFNγ.DiscussionThe inflammatory responses from maternal allergic asthma in early gestation and resulting increases in anxiety-like behavior in males support a link between the timing of prenatal insults and sex-specific developmental outcomes. Moreover, the heightened stress responses in late gestation and concomitant dampened inflammatory response to allergic asthma suggest that interactions between the maternal immune and stress-response systems shape early life fetal programming

    Maternal immune activation leads to activated inflammatory macrophages in offspring.

    No full text
    Several epidemiological studies have shown an association between infection or inflammation during pregnancy and increased risk of autism in the child. In addition, animal models have illustrated that maternal inflammation during gestation can cause autism-relevant behaviors in the offspring; so called maternal immune activation (MIA) models. More recently, permanent changes in T cell cytokine responses were reported in children with autism and in offspring of MIA mice; however, the cytokine responses of other immune cell populations have not been thoroughly investigated in these MIA models. Similar to changes in T cell function, we hypothesized that following MIA, offspring will have long-term changes in macrophage function. To test this theory, we utilized the poly (I:C) MIA mouse model in C57BL/6J mice and examined macrophage cytokine production in adult offspring. Pregnant dams were given either a single injection of 20mg/kg polyinosinic-polycytidylic acid, poly (I:C), or saline delivered intraperitoneally on gestational day 12.5. When offspring of poly (I:C) treated dams reached 10weeks of age, femurs were collected and bone marrow-derived macrophages were generated. Cytokine production was measured in bone marrow-derived macrophages incubated for 24h in either growth media alone, LPS, IL-4/LPS, or IFN-γ/LPS. Following stimulation with LPS alone, or the combination of IFN-γ/LPS, macrophages from offspring of poly (I:C) treated dams produced higher levels of IL-12(p40) (p<0.04) suggesting an increased M1 polarization. In addition, even without the presence of a polarizing cytokine or LPS stimulus, macrophages from offspring of poly (I:C) treated dams exhibited a higher production of CCL3 (p=0.05). Moreover, CCL3 levels were further increased when stimulated with LPS, or polarized with either IL-4/LPS or IFN-γ/LPS (p<0.05) suggesting a general increase in production of this chemokine. Collectively, these data suggest that MIA can produce lasting changes in macrophage function that are sustained into adulthood
    corecore