10 research outputs found

    Use of a Heteroduplex Mobility Assay To Detect Differences in the Fusion Protein Cleavage Site Coding Sequence among Newcastle Disease Virus Isolates

    No full text
    Newcastle disease virus (NDV) is an economically important pathogen of poultry that may cause clinical disease that ranges from a mild respiratory syndrome to a virulent form with high mortality, depending on an isolate's pathotype. Infections with virulent NDV strains are required to be reported by member nations to the Office of International Epizootes (OIE). The primary determinant for virulence among NDV isolates is the presence or absence of dibasic amino acids in the fusion (F) protein cleavage activation site. Along with biological virulence determinations as the definitive tests, OIE accepts reporting of the F protein cleavage site sequence of NDV isolates as a virulence criterion. Nucleotide sequence data for many NDV isolates recently isolated from infected chickens and other avian species worldwide have been deposited in GenBank. Consequently, viral genomic information surrounding the F protein cleavage site coding sequence was used to develop a heteroduplex mobility assay (HMA) to aid in further identification of molecular markers as predictors of NDV virulence. Using common vaccine strains as a reference, we were able to distinguish virulent viruses among NDV isolates that correlated with phylogenetic analysis of the nucleotide sequence. This technique was also used to examine NDV isolates not previously characterized. We were able to distinguish vaccine-like viruses from other isolates potentially virulent for chickens. This technique will help improve international harmonization of veterinary biologics as set forth by the OIE and the Veterinary International Cooperation on Harmonization of Technical Requirements of Veterinary Medicinal Products. Ultimately, the HMA could be used for initial screening among a large number of isolates and rapid identification of potentially virulent NDV that continue to threaten commercial poultry worldwide

    Blastocystis hominis revisited

    No full text

    Conservation agriculture and climate change

    No full text
    This chapter review aims at developing a clear understanding of the impacts and benefits of conservation agriculture (CA) with respect to climate change, and examining if there are any misleading findings at present in the scientific literature. Most of the world’s agricultural soils have been depleted of organic matter and soil health over the years under tillage-based agriculture (TA), compared with their state under natural vegetation. This degradation process can be reversed and this chapter identifies the conditions that can lead to increase in soil organic matter content and improvement in soil health under CA practices which involve minimum soil disturbance, maintenance of soil cover, and crop diversity. The chapter also discusses the need to refer to specific carbon pools when addressing carbon sequestration, as each carbon category has a different turnover rate. With respect to greenhouse gas emissions, sustainable agricultural systems based on CA principles are described which result in lower emissions from farm operations as well as from machinery manufacturing processes, and that also help to reduce fertilizer use. This chapter describes that terrestrial carbon sequestration efficiently be achieved by changing the management of agricultural lands from high soil disturbance, as TA practices to low disturbance, as CA practices, and by adopting effective nitrogen management practices to provide a positive nitrogen balance for carbon sequestration. However, full advantages of CA in terms of carbon sequestration can usually be observed only in the medium to longer term when CA practices and associated carbon sequestration processes in the soil are well established

    Parasites and Vaccination

    No full text

    Conservation Agriculture and Climate Change

    No full text
    corecore