6 research outputs found

    Some remarks on the observational constraints on the self-interacting scalar field model for dark energy

    Full text link
    The dark energy component of the cosmic budget is represented by a self-interacting scalar field. The violation of the null energy condition is allowed. Hence, such component can also represent a phantom fluid. The model is tested using supernova type Ia and matter power spectrum data. The supernova test leads to preferred values for configurations representing the phantom fluid. The matter power spectrum constraints for the dark energy equation of state parameter are highly degenerated. In both cases, values for the equation of state parameter corresponding to the phantom fluid are highly admitted if no particular prior is used.Comment: Latex file, 12 pages, 12 figures in eps forma

    The effect of essential oil of Syzygium cumini on the development of granulomatous inflammation in mice

    Get PDF
    The anti-inflammatory and apoptotic activity of the essential oil of Syzygium cumini (L.) Skeels, Myrtaceae, leaves was investigated in vivo. The anti-inflammatory action and chronic granulomatous inflammation in BALB/c mice, intravenously infected with Mycobacterium bovis, BCG, (Bacillo Calmet Guerim), was judged by measuring and classifying the granulomas formed in the hepatic parenchyma. The degree of apoptosis in the inflammatory cells was also measured. A reduction in the granulomatous area and a change in the pattern of the granulomas were found. Anti-mycobacterial activity of the essential oil against M. bovis was detected in vitro by an interferometric method in liquid culture medium. The chemical constituents of the essential oil were determined by GC/MS. Higher yields of the essential oil of S. cumini leaves were obtained by extraction in a Clevenger apparatus when the fresh leaves were previously frozen as a pre-processing step. The essential oil obtained from this plant demonstrated a statistically significant and dramatic effect in the chosen model system

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    No full text
    Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data
    corecore