6 research outputs found

    Early selection in Theobroma grandiflorum, aiming at tolerance to hypoxia

    Get PDF
    Abstract Cupuassu (Theobroma grandiflorum)-based agroforestry system (AFS) can be used for restoration of vegetation around springs and riparian forests of water sources (rivers, streams, lakes etc.), subject to constant flooding. The objectives of this work were to study the relations between morphophysiological traits when flooding occurs, determining the most important to assess genotypes’ tolerance, and evaluate the ability of cupuassu genotypes to express alternative phenotypes and grow efficiently, in order to select materials capable of sustaining hypoxic conditions. The trial was carried out in a greenhouse, in a completely randomized design with a 16 x 2 (16 progenies and two water regimes) factorial scheme and four replications. Treatments started six months after the seedlings were transplanted. 15 traits related to vegetative development, biomass accumulation and physiology were measured for the experimental evaluation. Correlations and principal components were estimated to study the traits’ interrelationships and identify the most important to assist progeny selection. The results revealed that, among the evaluated traits, ten were sufficient to explain the variability within the population and four were elected as the most relevant to select the best progenies. 75% of the genotypes showed tolerance to partial flooding and based on performance and plasticity, we selected G174, G48 and G56 for a broader spectrum and G44, G47 and G51 for hypoxic conditions only. The promising evidence pointed out here will need to be corroborated with field tests, so that the cupuassu tree can be recommended in the recovery of environments subject to hypoxia

    Interaction of insecticidal proteins from Pseudomonas spp. and Bacillus thuringiensis for boll weevil management.

    No full text
    Cotton crop yields are largely affected by infestations of Anthonomus grandis, which is its main pest. Although Bacillus thuringiensis (Bt) derived proteins can limit insect pest infestations, the diverse use of control methods becomes a viable alternative in order to prolong the use of technology in the field. One of the alternative methods to Bt technology has been the utilization of certain Pseudomonas species highly efficient in controlling coleopteran insects have been used to produce highly toxic insecticidal proteins. This study aimed to evaluate the toxicity of IPD072Aa and PIP-47Aa proteins, isolated from Pseudomonas spp., in interaction with Cry1Ia10, Cry3Aa, and Cry8B proteins isolated from B. thuringiensis, to control A. grandis in cotton crops. The genes IPD072Aa and PIP-47Aa were synthesized and cloned into a pET-SUMO expression vector. Moreover, Cry1Ia10, Cry3Aa, and Cry8B proteins were obtained by inducing recombinant E. coli clones, which were previously acquired by our research group from the Laboratory of Bacteria Genetics and Applied Biotechnology (LGBBA). These proteins were visualized in SDS-PAGE, quantified, and incorporated into an artificial diet to estimate their lethal concentrations (LC) through individual or combined bioassays. The results of individual toxicity revealed that IPD072Aa, PIP-47Aa, Cry1Ia10, Cry3Aa, and Cry8B were efficient in controlling A. grandis, with the latter being the most toxic. Regarding interaction assays, a high synergistic interaction was observed between Cry1Ia10 and Cry3Aa. All interactions involving Cry3Aa and PIP-47Aa, when combined with other proteins, showed a clear synergistic effect. Our findings highlighted that the tested proteins in combination, for the most part, increase toxicity against A. grandis neonate larvae, suggesting possible constructions for pyramiding cotton plants to the manage and the control boll weevils

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    No full text
    Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data

    NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics

    No full text
    Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data

    NEOTROPICAL ALIEN MAMMALS: a data set of occurrence and abundance of alien mammals in the Neotropics

    No full text
    Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal-central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation-related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data
    corecore