11 research outputs found

    Optical coherence tomography angiography findings in pigmented paravenous chorioretinal atrophy

    Get PDF
    Purpose:To analyze the retino-choroidal vascular characteristics of patients affected by pigmented paravenous chorio-retinal atrophy by means of optical coherence tomography (OCT) angiography.Methods:This study was designed as an observational, cross-sectional case series. Multimodal imaging included fundus autofluorescence, structural OCT, and OCT angiography. The quantitative OCT angiography analyses included the calculation of the vessel density and choriocapillaris porosity.Results:Overall, 12 patients (24 eyes) affected by pigmented paravenous chorio-retinal atrophy were recruited. Structural OCT of the areas involved by pigmented paravenous chorio-retinal atrophy as visualized on the fundus autofluorescence showed a complete ellipsoid zone and external limiting membrane absence, with thinning of ganglion cell complex, outer nuclear layer, and outer plexiform layer, but associated with the optical partial preservation of the retinal pigment epithelium. Optical coherence tomography angiography quantitative assessment of the retinal regions affected by PPRCA, as visualized by fundus autofluorescence, was characterized by normal vessel density at the level of superficial capillary plexus but significantly altered vessel density of deep capillary plexus and choriocapillaris, with higher choriocapillaris porosity. The presence of macular atrophy was significantly correlated with worse deep capillary plexus and choriocapillaris vessel density values. Furthermore, a statistically significant correlation between the fundus autofluorescence patterns and the retinal vascular status was found.Conclusion:Optical coherence tomography angiography quantitative analyses in pigmented paravenous chorio-retinal atrophy demonstrate a specific impairment at the level of the deep capillary plexus, which could in turn bring about a thinning of ganglion cell complex and outer nuclear layer. The alterations at the level of the choriocapillaris and the choroid, in general, could then represent a secondary effect

    Electrophysiological and SD-OCT findings in patients receiving chloroquine therapy in relation to cumulative dosage and duration of treatment

    No full text
    Purpose: Assessment of multifocal ERG (mfERG) changes in patients treated with chloroquine and their correlation with morphological abnormalities, detected by spectral-domain optical coherence tomography in relation to cumulative dosage. Methods: Data from 37 eyes of 20 patients were retrospectively collected, and one randomly selected eye per patient was considered for statistical analysis. Eyes were divided into three groups according to mfERG and visual acuity findings: normal, early and advanced maculopathy. Functional measures of the first three mfERG rings were compared with retinal thickness measures of the corresponding OCT ETDRS circles. Data on cumulative dose and duration of therapy were also evaluated. Results: The mean mfERG values progressively decreased according to the stage of the disease. In particular in the early maculopathy group, amplitudes were significantly reduced in all the three central rings. The mean ring ratio R1/R2 was abnormal only in the early maculopathy group. OCT thickness measures were significantly lower in all the three ETDRS circles in the advanced maculopathy group, and in the paracentral circle in the early maculopathy group. Considering all the eyes, there was a statistically significant correlation between functional and morphological values (p < 0.001). High chloroquine cumulative dosages were always associated with retinal toxic effects, whereas lower cumulative dosages generated different levels of toxicity. Conclusions: This study shows a strong association between mfERG ring values and the corresponding OCT thickness measures; however, mfERG may enhance early detection of functional changes in patients treated with chloroquine, especially in ambiguous cases. At low chloroquine cumulative dosages, different subjects might have different susceptibilities to the drug

    Fundus autofluorescence in children and teenagers with hereditary retinal diseases

    No full text
    INTRODUCTION: In adults, evaluation of fundus autofluorescence (AF) plays an important role in the differential diagnosis of retinal diseases. The aim of this study was to evaluate the feasibility of recording AF in children and teenagers and to define typical AF findings of various hereditary retinal diseases during childhood. METHODS: Fifty patients aged 2 to 16 years with hereditary retinal diseases were analysed using the HRA (Heidelberg Retina Angiograph). To enhance the AF signal, a mean of up to 16 single images was calculated. Twenty healthy children (aged 4-16 years) served as controls. RESULTS: In many children as young as 5 years of age and even in one 2-year-old child good AF images could be obtained. To achieve high quality images, larger image series (about 50 single images) were taken and appropriate single images were chosen manually to calculate the mean. Characteristically, Stargardt disease shows a central oval area of reduced AF, often surrounded by more irregular AF. In patients with Best disease, a central round structure with regular or irregular intense AF is visualised. Some patients with X-linked retinoschisis show central radial structures. In many patients with rod-cone dystrophies, a central oval ring-shaped area of increased AF is present. In early-onset severe retinal dystrophy (EOSRD) with RPE65 mutations AF is completely absent, whereas in other forms of Leber congenital amaurosis, AF is normal. DISCUSSION: Fundus autofluorescence may visualise disease-specific distributions of lipofuscin in the retinal pigment epithelium, often not (yet) visible on ophthalmoscopy. AF images can be used in children to differentiate hereditary retinal diseases and to facilitate follow-up controls. In many cases, four single images are sufficient to analyse the AF pattern

    An innovative strategy for the molecular diagnosis of Usher syndrome identifies causal biallelic mutations in 93% of European patients

    No full text
    Usher syndrome (USH), the most prevalent cause of hereditary deafness-blindness, is an autosomal recessive and genetically heterogeneous disorder. Three clinical subtypes (USH1-3) are distinguishable based on the severity of the sensorineural hearing impairment, the presence or absence of vestibular dysfunction, and the age of onset of the retinitis pigmentosa. A total of 10 causal genes, 6 for USH1, 3 for USH2, and 1 for USH3, and an USH2 modifier gene, have been identified. A robust molecular diagnosis is required not only to improve genetic counseling, but also to advance gene therapy in USH patients. Here, we present an improved diagnostic strategy that is both cost- and time-effective. It relies on the sequential use of three different techniques to analyze selected genomic regions: targeted exome sequencing, comparative genome hybridization, and quantitative exon amplification. We screened a large cohort of 427 patients (139 USH1, 282 USH2, and six of undefined clinical subtype) from various European medical centers for mutations in all USH genes and the modifier gene. We identified a total of 421 different sequence variants predicted to be pathogenic, about half of which had not been previously reported. Remarkably, we detected large genomic rearrangements, most of which were novel and unique, in 9% of the patients. Thus, our strategy led to the identification of biallelic and monoallelic mutations in 92.7% and 5.8% of the USH patients, respectively. With an overall 98.5% mutation characterization rate, the diagnosis efficiency was substantially improved compared with previously reported methods

    Distribution of conjunctival ultraviolet autoflourescence in a population-based study: the Norfolk Island Eye Study

    No full text
    OBJECTIVE: The objective of this study was to describe the distribution of conjunctival ultraviolet autofluorescence (UVAF) in an adult population. METHODS: We conducted a cross-sectional, population-based study in the genetic isolate of Norfolk Island, South Pacific Ocean. In all, 641 people, aged 15 to 89 years, were recruited. UVAF and standard (control) photographs were taken of the nasal and temporal interpalpebral regions bilaterally. Differences between the groups for non-normally distributed continuous variables were assessed using the Wilcoxon-Mann-Whitney ranksum test. Trends across categories were assessed using Cuzick's non-parametric test for trend or Kendall's rank correlation τ. RESULTS: Conjunctival UVAF is a non-parametric trait with a positively skewed distribution. Median amount of conjunctival UVAF per person (sum of four measurements; right nasal/temporal and left nasal/temporal) was 28.2 mm(2) (interquartile range 14.5-48.2). There was an inverse, linear relationship between UVAF and advancing age (P<0.001). Males had a higher sum of UVAF compared with females (34.4 mm(2) vs 23.2 mm(2), P<0.0001). There were no statistically significant differences in area of UVAF between right and left eyes or between nasal and temporal regions. CONCLUSION: We have provided the first quantifiable estimates of conjunctival UVAF in an adult population. Further data are required to provide information about the natural history of UVAF and to characterise other potential disease associations with UVAF. UVR protective strategies should be emphasised at an early age to prevent the long-term adverse effects on health associated with excess UVR

    An innovative strategy for the molecular diagnosis of Usher syndrome identifies causal biallelic mutations in 93% of European patients

    Get PDF
    International audienceUsher syndrome (USH), the most prevalent cause of hereditary deafness-blindness, is an autosomal recessive and genetically heterogeneous disorder. Three clinical subtypes (USH1-3) are distinguishable based on the severity of the sensorineural hearing impairment, the presence or absence of vestibular dysfunction, and the age of onset of the retinitis pigmentosa. A total of 10 causal genes, 6 for USH1, 3 for USH2, and 1 for USH3, and an USH2 modifier gene, have been identified. A robust molecular diagnosis is required not only to improve genetic counseling, but also to advance gene therapy in USH patients. Here, we present an improved diagnostic strategy that is both cost- and time-effective. It relies on the sequential use of three different techniques to analyze selected genomic regions: targeted exome sequencing, comparative genome hybridization, and quantitative exon amplification. We screened a large cohort of 427 patients (139 USH1, 282 USH2, and six of undefined clinical subtype) from various European medical centers for mutations in all USH genes and the modifier gene. We identified a total of 421 different sequence variants predicted to be pathogenic, about half of which had not been previously reported. Remarkably, we detected large genomic rearrangements, most of which were novel and unique, in 9% of the patients. Thus, our strategy led to the identification of biallelic and monoallelic mutations in 92.7% and 5.8% of the USH patients, respectively. With an overall 98.5% mutation characterization rate, the diagnosis efficiency was substantially improved compared with previously reported methods
    corecore