87 research outputs found

    The key hypoxia regulated gene CAIX is upregulated in basal-like breast tumours and is associated with resistance to chemotherapy

    Get PDF
    Basal-like tumours account for 15% of invasive breast carcinomas and are associated with a poorer prognosis and resistance to therapy. We hypothesised that this aggressive phenotype is because of an intrinsically elevated hypoxic response. Microarrayed tumours from 188 patients were stained for hypoxia-inducible factor (HIF)-1α, prolyl hydroxylase (PHD)1, PHD2, PHD3 and factor inhibiting HIF (FIH)-1, and carbonic anhydrase (CA) IX stained in 456 breast tumours. Tumour subtypes were correlated with standard clincopathological parameters as well as hypoxic markers. Out of 456 tumours 62 (14%) tumours were basal-like. These tumours were positively correlated with high tumour grade (P<0.001) and were associated with a significantly worse disease-free survival compared with luminal tumours (P<0.001). Fifty percent of basal-like tumours expressed HIF-1α, and more than half expressed at least one of the PHD enzymes and FIH-1. Basal-like tumours were nine times more likely to be associated with CAIX expression (P<0.001) in a multivariate analysis. Carbonic anhydrase IX expression was positively correlated with tumour size (P=0.005), tumour grade (P<0.001) and oestrogen receptor (ER) negativity (P<0.001). Patients with any CAIX-positive breast tumour phenotype and in the basal tumour group had a significantly worse prognosis than CAIX-negative tumours when treated with chemotherapy (P<0.001 and P=0.03, respectively). The association between basal phenotype and CAIX suggests that the more aggressive behaviour of these tumours is partly due to an enhanced hypoxic response. Further, the association with chemoresistance in CAIX-positive breast tumours and basal-like tumours in particular raises the possibility that targeted therapy against HIF pathway or downstream genes such as CAs may be an approach to investigate for these patients

    Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer

    Get PDF
    Recent publications have classified breast cancers on the basis of expression of cytokeratin-5 and -17 at the RNA and protein levels, and demonstrated the importance of these markers in defining sporadic tumours with bad prognosis and an association with BRCA1-related breast cancers. These important observations using different technology platforms produce a new functional classification of breast carcinoma. However, it is important in developing hypotheses about the pathogenesis of this tumour type to review the nomenclature that is being used to emphasize potential confusion between terminology that defines clinical subgroups and markers of cell lineage. This article reviews the lineages in the normal breast in relation to what have become known as the 'basal-like' carcinomas

    Inhibitory Effects of Prior Low-dose X-irradiation on Ischemia-reperfusion Injury in Mouse Paw

    Get PDF
    We have reported that low-dose, unlike high-dose, irradiation enhanced antioxidation function and reduced oxidative damage. On the other hand, ischemia-reperfusion injury is induced by reactive oxygen species. In this study, we examined the inhibitory effects of prior low-dose X-irradiation on ischemia-reperfusion injury in mouse paw. BALB/c mice were irradiated by sham or 0.5 Gy of X-ray. At 4 hrs after irradiation, the left hind leg was bound 10 times with a rubber ring for 0.5, 1, or 2 hrs and the paw thickness was measured. Results show that the paw swelling thickness by ischemia for 0.5 hr was lower than that for 2 hrs. At 1 hr after reperfusion from ischemia for 1 hr, superoxide dismutase activity in serum was increased in those mice which received 0.5 Gy irradiation and in the case of the ischemia for 0.5 or 1 hr, the paw swelling thicknesses were inhibited by 0.5 Gy irradiation. In addition, interstitial edema in those mice which received 0.5 Gy irradiation was less than that in the mice which underwent by sham irradiation. These findings suggest that the ischemia-reperfusion injury is inhibited by the enhancement of antioxidation function by 0.5 Gy irradiation

    Thiram inhibits angiogenesis and slows the development of experimental tumours in mice

    Get PDF
    Thiram-tetramethylthiuram disulphide – a chelator of heavy metals, inhibited DNA synthesis and induced apoptosis in cultured bovine capillary endothelial cells. Bovine capillary endothelial cells were 10–60-fold more sensitive to thiram than other cell types. These effects were prevented by addition of antioxidants, indicating involvement of reactive oxygen species. Exogenously added Cu2+ impeded specifically and almost completely the inhibitory effect of thiram for bovine capillary endothelial cells. Moreover, thiram had markedly inhibited human recombinant Cu/Zn superoxide dismutase enzymatic activity (85%) in vitro. Moreover, PC12-SOD cells with elevated Cu/Zn superoxide dismutase were less sensitive to thiram treatment than control cells. These data indicate that the effects of thiram are mediated by inhibition of Cu/Zn superoxide dismutase activity. Oral administration of thiram (13–30 μg mouse−1), inhibited angiogenesis in CD1 nude mice. Tumour development is known to largely depend on angiogenesis. We found that oral administration of thiram (30 μg) to mice caused significant inhibition of C6 glioma tumour development (60%) and marked reduction (by 3–5-fold) in metastatic growth of Lewis lung carcinoma. The data establish thiram as a potential inhibitor of angiogenesis and raise the possibility for its use as therapy in pathologies in which neovascularisation is involved, including neoplasia

    Myocardial ischemia and reperfusion: The role of oxygen radicals in tissue injury

    Full text link
    Thrombolytic therapy has gained widespread acceplance as a means of treating coronary artery thrombosis in patients with acute myocardial infarction. Although experimental data have demonstrated that timely reperfusion limits the extent of infarction caused by regional ischemia, there is growing evidence that reperfusion is associated with an inflammatory response to ischemia that exacerbates the tissue injury. Ischemic myocardium releases archidonate and complement-derived chemotactic factors, e.g., leukotriene B 4 and C 5a , which attract and activate neutrophils. Reperfusion of ischemic myocardium accelerates the influx of neutrophils, which release reactive oxygen products, such as superoxide anion and hydrogen peroxide, resulting in the formation of a hydroxyl radical and hypochlorous acid. The latter two species may damage viable endothelial cells and myocytes via the peroxidation of lipids and oxidation of protein sulfhydryl groups, leading to perturbations of membrane permeability and enzyme function. Neutrophil depletion by antiserum and inhibition of neutrophil function by drugs, e.g., ibuprofen, prostaglandins (prostacyclin and PGE 1 ), or a monoclonal antibody, to the adherence-promoting glycoprotein Mo-1 receptor, have been shown to limit the extent of canine myocardial injury due to coronary artery occlusion/reperfusion. Recent studies have challenged the hypothesis that xanthine-oxidase-derived oxygen radicals are a cause of reperfusion injury. Treatment with allopurinol or oxypurinol may exert beneficial effects on ischemic myocardium that are unrelated to the inhibition of xanthine oxidase. Furthermore, the human heart may lack xanthine oxidase activity. Further basic research is needed, therefore, to clarify the importance of xanthine oxidase in the pathophysiology of reperfusion injury. Current data are highly suggestive of a deleterious role of the neutrophil in organ reperfusion and justify consideration of the clinical investigation of neutrophil inhibitors in patients receiving thrombolytic agents during the evolution of an acute myocardial infarction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44595/1/10557_2004_Article_BF00133206.pd
    corecore