6 research outputs found

    Genotyping of <it>B. licheniformis</it> based on a novel multi-locus sequence typing (MLST) scheme

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Bacillus licheniformis</it> has for many years been used in the industrial production of enzymes, antibiotics and detergents. However, as a producer of dormant heat-resistant endospores <it>B. licheniformis</it> might contaminate semi-preserved foods. The aim of this study was to establish a robust and novel genotyping scheme for <it>B. licheniformis</it> in order to reveal the evolutionary history of 53 strains of this species. Furthermore, the genotyping scheme was also investigated for its use to detect food-contaminating strains.</p> <p>Results</p> <p>A multi-locus sequence typing (MLST) scheme, based on the sequence of six house-keeping genes (<it>adk, ccpA, recF, rpoB, spo0A</it> and <it>sucC</it>) of 53 <it>B. licheniformis</it> strains from different sources was established. The result of the MLST analysis supported previous findings of two different subgroups (lineages) within this species, named “A” and “B” Statistical analysis of the MLST data indicated a higher rate of recombination within group “A”. Food isolates were widely dispersed in the MLST tree and could not be distinguished from the other strains. However, the food contaminating strain <it>B. licheniformis</it> NVH1032, represented by a unique sequence type (ST8), was distantly related to all other strains.</p> <p>Conclusions</p> <p>In this study, a novel and robust genotyping scheme for <it>B. licheniformis</it> was established, separating the species into two subgroups. This scheme could be used for further studies of evolution and population genetics in <it>B. licheniformis.</it></p

    Genetic distribution of 295 Bacillus cereus group members based on adk-screening in combination with MLST (Multilocus Sequence Typing) used for validating a primer targeting a chromosomal locus in B. anthracis

    Get PDF
    The genetic distribution of 295 Bacillus cereus group members has been investigated by using a modified Multilocus Sequence Typing method (MLST). By comparing the nucleic acid sequence of the adk gene fragment, isolates of B. cereus group members most related to B. anthracis may be easily identified. The genetic distribution, with focus on the B. anthracis close neighbours, was used to evaluate a new primer set for specific identification of B. anthracis. This primer set, BA5510-1/2, targeted the putative B. anthracis specific gene BA5510. Real-time PCR using BA5510-1/2 amplified the target fragment from all B. anthracis strains tested and only two (of 289) non-B. anthracis strains analysed. This is one of the most thoroughly validated chromosomal B. anthracis markers for real-time PCR identification, in which the screened collection contained several very closely related B. anthracis strains.Genetic distribution of 295 Bacillus cereus group members based on adk-screening in combination with MLST (Multilocus Sequence Typing) used for validating a primer targeting a chromosomal locus in B. anthracisacceptedVersio

    Development and validation of a real-time quantitative PCR assay for rapid identification of Bacillus anthracis in environmental samples

    No full text
    A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions

    Temporal dynamics in microbial soil communities at anthrax carcass sites

    No full text
    Background Anthrax is a globally distributed disease affecting primarily herbivorous mammals. It is caused by the soil-dwelling and spore-forming bacterium Bacillus anthracis. The dormant B. anthracis spores become vegetative after ingestion by grazing mammals. After killing the host, B. anthracis cells return to the soil where they sporulate, completing the lifecycle of the bacterium. Here we present the first study describing temporal microbial soil community changes in Etosha National Park, Namibia, after decomposition of two plains zebra (Equus quagga) anthrax carcasses. To circumvent state-associated-challenges (i.e. vegetative cells/spores) we monitored B. anthracis throughout the period using cultivation, qPCR and shotgun metagenomic sequencing. Results The combined results suggest that abundance estimation of spore-forming bacteria in their natural habitat by DNA-based approaches alone is insufficient due to poor recovery of DNA from spores. However, our combined approached allowed us to follow B. anthracis population dynamics (vegetative cells and spores) in the soil, along with closely related organisms from the B. cereus group, despite their high sequence similarity. Vegetative B. anthracis abundance peaked early in the time-series and then dropped when cells either sporulated or died. The time-series revealed that after carcass deposition, the typical semi-arid soil community (e.g. Frankiales and Rhizobiales species) becomes temporarily dominated by the orders Bacillales and Pseudomonadales, known to contain plant growth-promoting species. Conclusion Our work indicates that complementing DNA based approaches with cultivation may give a more complete picture of the ecology of spore forming pathogens. Furthermore, the results suggests that the increased vegetation biomass production found at carcass sites is due to both added nutrients and the proliferation of microbial taxa that can be beneficial for plant growth. Thus, future B. anthracis transmission events at carcass sites may be indirectly facilitated by the recruitment of plant-beneficial bacteria
    corecore