105 research outputs found

    Progressive Transient Photon Beams

    Get PDF
    In this work we introduce a novel algorithm for transient rendering in participating media. Our method is consistent, robust, and is able to generate animations of time-resolved light transport featuring complex caustic light paths in media. We base our method on the observation that the spatial continuity provides an increased coverage of the temporal domain, and generalize photon beams to transient-state. We extend the beam steady-state radiance estimates to include the temporal domain. Then, we develop a progressive version of spatio-temporal density estimations, that converges to the correct solution with finite memory requirements by iteratively averaging several realizations of independent renders with a progressively reduced kernel bandwidth. We derive the optimal convergence rates accounting for space and time kernels, and demonstrate our method against previous consistent transient rendering methods for participating media

    Simultaneous optimization of circadian and color performance for smart lighting systems design

    Get PDF
    We present in this work a method to design lighting sources that can be adapted to different temperatures of color and, simultaneously, with a tunable circadian character. We obtained an acceptable range of tuning in both parameters compared to the bibliography. This kind of lighting source has potential applications particularly in building lighting, but also in farming or agriculture. At the same time, we have shown the possibilities of multiobjective optimizations in the lighting industry. The optimization has been developed using the Genetic Algorithm and multiobjective merit functions. The lighting source is able to work under two different regimes regarding the circadian effect, with a design based on a combination of two monochromatic and two white Lighting Emitting Diodes (enough for controlling the circadian character and the color performance at the same time). A prototype, which can be manually or automatically controlled, has been also implemented and evaluated, with a performance in terms of color coordinates very close to the daylight, showing a modulation of the Circadian Efficacy of Radiation between 6% and 16%, and a Color Rendering Index above 80%

    SURVIVAL OF ATLANTIC BLUEFIN TUNA (THUNNUS THYNNUS) LARVAE HATCHED AT DIFFERENT PH AND SALINITY CONDITIONS

    Get PDF
    In this study, we assessed the effect of pH and salinity as independent factors on larval survival (LS) of Atlantic bluefin tuna (ABFT –Thunnus thynnus) together with their Na+/K+-ATPase and V-type H+-ATPase activities. Fertilized eggs of ABFT were obtained on 25 June 2016 from a spontaneous spawning of broodstock in the farming facilities at El Gorguel (Cartagena, SE Spain) of Caladeros del Mediterráneo Company. The fertilized eggs were transferred to facilities of the Spanish Institute of Oceanography (IEO) in Mazarrón (SE Spain). In a first experiment, eggs (n = 150 per treatment, in 3 replicates) were exposed to sea water salinity (SW: 38 ppt) and four pH treatments until hatch was completed (44 hours at 23 ºC): 8.0 (control), 7.7 (near future), 7.5 (far future) and 7.3 (lower). In a second experiment eggs (n = 150 per treatment, in 3 replicates) were exposed to eleven salinities treatments and constant pH 8.0 (control) until hatch was completed (44 hours at 23 ºC): 27 , 30 , 33 , 36 , 37 , 38 (control), 39 , 40 , 43 , 46 and 49 ppt. No significant differences in LS were observed with pH treatment, but lower H+-ATPase activity was detected at control environmental pH (pH 8.0). A ‘‘U-shaped’’ relationship was observed between hatching salinity and both Na+/K+-ATPase and H+-ATPase activities in whole larvae hatched, increasing both activities in groups exposed to extreme salinities. However, LS showed an inverse “U shape” curve respect to environmental salinity with higher values at intermediate salinities and lower LS at extreme salinities. These results suggest higher survival rates with lower active pumps activities. Survival results are discussed in terms of osmoregulatory cost adapting to a pH and salinity predicted for the near future scenarios. This work was funding by the European Union’s Horizon 2020research and innovation programme under Grant Agreement No. 678193

    Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP

    Get PDF
    Mechanical forces regulate multiple essential pathways in the cell. The nuclear translocation of mechanoresponsive transcriptional regulators is an essential step for mechanotransduction. However, how mechanical forces regulate the nuclear import process is not understood. Here, we identify a highly mechanoresponsive nuclear transport receptor (NTR), Importin-7 (Imp7), that drives the nuclear import of YAP, a key regulator of mechanotransduction pathways. Unexpectedly, YAP governs the mechanoresponse of Imp7 by forming a YAP/Imp7 complex that responds to mechanical cues through the Hippo kinases MST1/2. Furthermore, YAP behaves as a dominant cargo of Imp7, restricting the Imp7 binding and the nuclear translocation of other Imp7 cargoes such as Smad3 and Erk2. Thus, the nuclear import process is an additional regulatory layer indirectly regulated by mechanical cues, which activate a preferential Imp7 cargo, YAP, which competes out other cargoes, resulting in signaling crosstalk.We thank Miguel Sánchez for text editing. We thank Erika R. Geisbrecht, Kenneth Irvine, and Ariberto Fassati for kindly providing reagents. This study was supported by grants from the Spanish Ministry of Science and Innovation (MICIIN)/Agencia Estatal de Investigación (AEI)/European Regional Development Fund (ARDF/FEDER) “A way to make Europe” (PID2020-118658RB-I00, SAF2017-83130-R, IGP-SO grant MINSEV1512-07-2016, CSD2009-0016 and BFU2016-81912-REDC), Comunidad Autónoma de Madrid (Tec4Bio-CM, S2018/NMT¬4443), Fundació La Marató de TV3 (201936-30-31), “La Caixa” Foundation (HR20-00075) and AECC (PROYE20089DELP) all to M.A.d.P. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 641639. M.G.G. and L.S. are sponsored by FPU fellowships (FPU15/03776 and FPU18/05394, respectively). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MICIIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence CEX2020-001041-S

    Distributed physical sensors network for the protection of critical infrastractures against physical attacks

    Get PDF
    The SCOUT project is based on the use of multiple innovative and low impact technologies for the protection of space control ground stations and the satellite links against physical and cyber-attacks, and for intelligent reconfiguration of the ground station network (including the ground node of the satellite link) in the case that one or more nodes fail. The SCOUT sub-system devoted to physical attacks protection, SENSNET, is presented. It is designed as a network of sensor networks that combines DAB and DVB-T based passive radar, noise radar, Ku-band radar, infrared cameras, and RFID technologies. The problem of data link architecture is addressed and the proposed solution described

    Immunotherapy moves to the early-stage setting in non-small cell lung cancer: emerging evidence and the role of biomarkers

    Get PDF
    Despite numerous advances in targeted therapy and immunotherapy in the last decade, lung cancer continues to present the highest mortality rate of all cancers. Targeted therapy based on specific genomic alterations, together with PD-1 and CTLA-4 axis blocking-based immunotherapy, have significantly improved survival in advanced non-small cell lung cancer (NSCLC) and both therapies are now well-established in this clinical setting. However, it is time for immunotherapy to be applied in patients with early-stage disease, which would be an important qualitative leap in the treatment of lung cancer patients with curative intent. Preliminary data from a multitude of studies are highly promising, but therapeutic decision-making should be guided by an understanding of the molecular features of the tumour and host. In the present review, we discuss the most recently published studies and ongoing clinical trials, controversies, future challenges and the role of biomarkers in the selection of best therapeutic options

    Does Mutational Robustness Inhibit Extinction by Lethal Mutagenesis in Viral Populations?

    Get PDF
    Lethal mutagenesis is a promising new antiviral therapy that kills a virus by raising its mutation rate. One potential shortcoming of lethal mutagenesis is that viruses may resist the treatment by evolving genomes with increased robustness to mutations. Here, we investigate to what extent mutational robustness can inhibit extinction by lethal mutagenesis in viruses, using both simple toy models and more biophysically realistic models based on RNA secondary-structure folding. We show that although the evolution of greater robustness may be promoted by increasing the mutation rate of a viral population, such evolution is unlikely to greatly increase the mutation rate required for certain extinction. Using an analytic multi-type branching process model, we investigate whether the evolution of robustness can be relevant on the time scales on which extinction takes place. We find that the evolution of robustness matters only when initial viral population sizes are small and deleterious mutation rates are only slightly above the level at which extinction can occur. The stochastic calculations are in good agreement with simulations of self-replicating RNA sequences that have to fold into a specific secondary structure to reproduce. We conclude that the evolution of mutational robustness is in most cases unlikely to prevent the extinction of viruses by lethal mutagenesis
    corecore