79 research outputs found

    An Attack Graph-Based Probabilistic Security Metric

    Full text link
    Abstract. To protect critical resources in today’s networked environments, it is desirable to quantify the likelihood of potential multi-step attacks that combine multiple vulnerabilities. This now becomes feasible due to a model of causal re-lationships between vulnerabilities, namely, attack graph. This paper proposes an attack graph-based probabilistic metric for network security and studies its effi-cient computation. We first define the basic metric and provide an intuitive and meaningful interpretation to the metric. We then study the definition in more com-plex attack graphs with cycles and extend the definition accordingly. We show that computing the metric directly from its definition is not efficient in many cases and propose heuristics to improve the efficiency of such computation.

    Effect of Impurities on Pentacene Thin Film Growth for Field-Effect Transistors

    Full text link
    Pentacenequinone (PnQ) impurities have been introduced into a pentacene source material at number densities from 0.001 to 0.474 to quantify the relative effects of impurity content and grain boundary structure on transport in pentacene thin-film transistors. Atomic force microscopy (AFM) and electrical measurements of top-contact pentacene thin-film transistors have been employed to directly correlate initial structure and final film structures, with the device mobility as a function of added impurity content. The results reveal a factor four decrease in mobility without significant changes in film morphology for source PnQ number fractions below ~0.008. For these low concentrations, the impurity thus directly influences transport, either as homogeneously distributed defects or by concentration at the otherwise-unchanged grain boundaries. For larger impurity concentrations, the continuing strong decrease in mobility is correlated with decreasing grain size, indicating an impurity-induced increase in the nucleation of grains during early stages of film growth.Comment: 18 pages, 4 Figures, 1 Tabl

    Shifting boundaries between the normal and the pathological:the case of mild intellectual disability

    Get PDF
    When disorders fade into normality, how can the threshold between normality and disorder be determined? In considering mild intellectual disability, I argue that economic factors partly determine thresholds. We tend to assume that the relationship between disorder, need and services is such that: first, a cut-off point between the disordered and the normal is determined; second, a needy population is identified; and third, resources are found (or at least should be found) to meet this need. However, the changing definitions of intellectual disability can best be understood if we think of this happening in reverse. That is, first, certain resources are thought obtainable, and then a cut-off point for disorder is selected which supplies an appropriately sized ‘needy population’

    Association between age at disease onset of anti-neutrophil cytoplasmic antibody-associated vasculitis and clinical presentation and short-term outcomes

    Get PDF
    Objectives: ANCA-associated vasculitis (AAV) can affect all age groups. We aimed to show that differences in disease presentation and 6 month outcome between younger- A nd older-onset patients are still incompletely understood. Methods: We included patients enrolled in the Diagnostic and Classification Criteria for Primary Systemic Vasculitis (DCVAS) study between October 2010 and January 2017 with a diagnosis of AAV. We divided the population according to age at diagnosis: <65 years or ≥65 years. We adjusted associations for the type of AAV and the type of ANCA (anti-MPO, anti-PR3 or negative). Results: A total of 1338 patients with AAV were included: 66% had disease onset at <65 years of age [female 50%; mean age 48.4 years (s.d. 12.6)] and 34% had disease onset at ≥65 years [female 54%; mean age 73.6 years (s.d. 6)]. ANCA (MPO) positivity was more frequent in the older group (48% vs 27%; P = 0.001). Younger patients had higher rates of musculoskeletal, cutaneous and ENT manifestations compared with older patients. Systemic, neurologic,cardiovascular involvement and worsening renal function were more frequent in the older-onset group. Damage accrual, measured with the Vasculitis Damage Index (VDI), was significantly higher in older patients, 12% of whom had a 6 month VDI ≥5, compared with 7% of younger patients (P = 0.01). Older age was an independent risk factor for early death within 6 months from diagnosis [hazard ratio 2.06 (95% CI 1.07, 3.97); P = 0.03]. Conclusion: Within 6 months of diagnosis of AAV, patients >65 years of age display a different pattern of organ involvement and an increased risk of significant damage and mortality compared with younger patients

    The Kinetics Of Charge Trapping In Polycrystalline Pentacene And Ion Migration In Light Emitting Electrochemical Cells Studied By Timeand Temperature-Resolved Electric Force Microscopy

    Full text link
    The microscopic mechanisms by which charges trap in organic electronic materials are poorly understood. While trapping and bias stress in thin film transistors have been investigated through bulk techniques, these efforts cannot account for the known local variations of trap concentration and kinetics across the film. We show that electric force microscopy (EFM) can be used to follow local trap formation kinetics in working pentacene thin-film transistors. The trap formation rate we found was hole-concentration dependent, strongly suggesting a trapping mechanism involving one or more chemical reactions, or at least, we hypothesize, an activated process. Chemically modified pentacene also shows concentration dependent trapping despite the presence of functional groups that should inhibit the proposed chemical trap formation mechanisms. Furthermore, we found that electrons, injected by gate voltage in modified pentacene and by light in unmodified pentacene, clear trapped charges. When the trapped holes are cleared by electron injection, there is an uncharged intermediate species remaining which accelerates future charge trapping. Finally, we use variable temperature to show direct evidence that the trapping mechanism is an activated process. In light-emitting electrochemical cells (LEECs) the redistribution of ions assists the injection of electronic carriers and leads to efficient light emission. The mechanism of operation of LEECs has been controversial, and there is no consensus regarding the distribution of electric field in these devices. Here, we use EFM to directly observe ion motion within the channel of an operating LEEC. Initial results in a planar configuration show ion migration on top of the electrodes. To properly test the models, the organic material was patterned solely between the electrodes. The observed ion motion agrees with the electrodynamic surface potential model: ions move to the electrodes to assist injection

    Purification of commercial 2,3-dimethyl phenol using supercritical fluid extraction

    No full text
    The commercial value of phenols is often reduced due to the presence of colored impurities. Several conventional techniques have been used for the purification of phenols. However, conventional purification techniques are tedious and make use of hazardous and expensive organic solvents. In this study, we present a new method for purification of an aged-discolored (orange) commercial 2,3-dimethyl phenol (2,3-DMP) reagent (~97%) using supercritical fluid CO2 (SCF CO2), as an extraction solvent. A supercritical fluid extraction (SFE)/purification apparatus was constructed and purification of the reagent under different extraction conditions was investigated. Based on the differential solubility of the 2,3-DMP and the impurities in SCF CO2, the commercial reagent was successfully purified by SFE; the purified 2,3-DMP was a white solid of high purity (\u3e 99.5%). The SFE method was also applied to purify a recently purchased batch of 2,3-DMP reagent. We found that the reagent purified by SFE was of a higher quality than a commercially available analytical standard. © Taylor & Francis Group, LLC

    k-zero day safety: Measuring the security risk of networks against unknown attacks

    Get PDF
    Abstract. The security risk of a network against unknown zero day attacks has been considered as something unmeasurable since software flaws are less predictable than hardware faults and the process of finding such flaws and developing exploits seems to be chaotic. In this paper, we propose a novel security metric, k-zero day safety, based on the number of unknown zero day vulnerabilities. That is, the metric simply counts how many unknown vulnerabilities would be required for compromising a network asset, regardless of what vulnerabilities those might be. We formally define the metric based on an abstract model of networks and attacks. We then devise algorithms for computing the metric. Finally, we show the metric can quantify many existing practices in hardening a network.
    • …
    corecore