
k-Zero Day Safety: Measuring the Security Risk of
Networks against Unknown Attacks

Lingyu Wang1, Anoop Singhal2, Sushil Jajodia3, and Steven Noel3

1 Concordia Institute for Information Systems Engineering
Concordia University

Montreal, QC H3G 1M8, Canada
wang@ciise.concordia.ca

2 Computer Security Division
National Institute of Standards and Technology

Gaithersburg, MD 20899, USA
anoop.singhal@nist.gov

3 Center for Secure Information Systems
George Mason University

Fairfax, VA 22030-4444, USA
{jajodia,snoel}@gmu.edu

Abstract. The security risk of a network against unknown zero day attacks has
been considered as something unmeasurable since software flaws are less pre-
dictable than hardware faults and the process of finding such flaws and developing
exploits seems to be chaotic [24]. In this paper, we propose a novel security met-
ric, k-zero day safety, based on the number of unknown zero day vulnerabilities.
That is, the metric counts at least how many unknown vulnerabilities are required
for compromising a network asset, regardless of what vulnerabilities those are.
We formally define the metric based on a model of relevant network components.
We then devise algorithms for computing the metric. Finally, we discuss how to
apply the metric for hardening a network.

1 Introduction

Today’s critical infrastructures and enterprises increasingly rely on networked
computer systems. Such systems must thus be secured against potential network
intrusions. However, before we can improve the security of a network, we must
be able to measure it, since you cannot improve what you cannot measure. We
need to measure how secure a network currently is, and how secure it would be
after introducing new security mechanisms or configuration changes. The lack
of such a capability would render network hardening a blind, if not futile, effort.

Emerging efforts on network security metrics (Section 5 will review re-
lated work) typically assign numeric scores to vulnerabilities as their relative
exploitability or likelihood. The assignment is usually based on known facts
about each vulnerability (e.g., whether it requires an authenticated user ac-
count). However, such a methodology is no longer applicable when considering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211511449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

zero day vulnerabilities about which we have no prior knowledge or experience.
In fact, a major criticism of existing efforts on security metrics is that unknown
zero day vulnerabilities are unmeasurable [24]. First, the knowledge about a
software system itself is not likely to help because unlike hardware faults, soft-
ware flaws leading to vulnerabilities are known to be much less predictable. Sec-
ond, modeling adversaries is not feasible either, because the process of finding
flaws and developing exploits is believed to be chaotic. Third, existing metrics
for known vulnerabilities are not helpful, because they measure the difficulty of
exploiting a known vulnerability but not that of finding a zero day vulnerability.

The incapability of measuring unknown zero day vulnerabilities can poten-
tially diminish the value of security mechanisms since an attacker can simply
step outside the implementation and do as he pleases [24]. What is the value of
a more secure configuration, if it is equally susceptible to zero day attacks? We
thus fall into the agnosticism that security is not quantifiable until we can fix all
security flaws (by then we certainly do not need any security metric, either).

In this paper, we propose a novel security metric, k-zero day safety, based
on the number of unknown zero day vulnerabilities. Specifically, instead of at-
tempting to measure which zero day vulnerability is more likely, our metric sim-
ply counts how many distinct zero day vulnerabilities a network can resist, re-
gardless of what vulnerabilities those are; a larger number indicates a relatively
more secure network, since the likelihood of having more distinct unknown vul-
nerabilities all available at the same time, applicable to the same network, and
exploitable by the same attacker, will be lower. Based on an abstract network
model, we formally define the metric and prove it to satisfy the three algebraic
properties of a metric function. To compute the metric, we design a series of
algorithms and study their complexity. Finally, we demonstrate the power of the
metric by applying it to network hardening, and we discuss practical issues in
instantiating the model.

The contribution of this work is twofold. First, to the best of our knowledge,
this is the first effort capable of quantifying the security risk of a network against
unknown zero day attacks. Second, we believe the metric would bring about new
opportunities to the evaluation, hardening, and design of secure networks.

In the rest of this paper, we first build intuitions through a running example.
We then define the model and metric in Section 2, design and analyze algorithms
in Section 3, discuss network hardening and model instantiation in Section 4,
review related work in Section 5, and finally conclude the paper in Section 6.

1.1 Motivating Example

The left-hand side of Figure 1 shows a toy example where host 1 provides an
HTTP service (http) and a secure shell service (ssh), and host 2 provides only

2

ssh. The firewall allows traffic to and from host 1, but only connections origi-
nated from host 2. Assume the main security concern is over the root privilege
on host 2. Clearly, if all the services are free of known vulnerabilities, a vulner-
ability scanner or attack graph will both lead to the same conclusion, that is, the
network is secure (an attacker on host 0 can never obtain the root privilege on
host 2), and no additional network hardening effort is necessary.

host 0

host 1

host 2

http

(iptables) ssh

ssh

firewall

〈user,0〉
〈root,1〉

〈root,2〉

〈vhttp,0,1〉

〈vssh,0,2〉

〈vssh,0, 1〉

〈vfirewall,0,F〉 〈0,2〉

〈root,1〉

〈root,2〉

〈vhttp,0,1〉

〈vssh,1,2〉 〈vssh,0,1〉
〈viptables,0,1〉

〈ssh,1〉
〈user,0〉

〈vfirewall,0,F〉 〈0,2〉 〈vssh,0,2〉

〈vssh,1,2〉

Fig. 1. Network Configuration and Sequences of Zero Day Attacks

However, we shall reach a different conclusion by considering how many
distinct zero day attacks the network can resist. The upper-right corner of Fig-
ure 1 shows three sequences of zero day attacks leading to 〈root, 2〉 (each pair
denotes a condition and each triple inside oval denotes the exploitation of a zero
day vulnerability): An attacker on host 0 can exploit a zero day vulnerability
in either http or ssh on host 1 to obtain the root privilege; using host 1 as a
stepping stone, he/she can exploit a zero day vulnerability in ssh on host 2 to
reach 〈root, 2〉; alternatively, he/she can exploit a zero day vulnerability in the
firewall (e.g., a weak password in its Web-base remote administration interface)
to re-establish the blocked connection to host 2 and then exploit ssh on host 2.
The network can resist at most one zero day attack since the second sequence
only requires one unique zero day vulnerability in ssh (on both host 1 and 2).

Now consider hardening the network by using iptables rules (iptables) to
allow only specific hosts, not including host 0, to connect to ssh on host 1. The
lower-right corner of Figure 1 shows four sequences of zero day attacks (the two
new sequences indicate exploiting a zero day vulnerability in iptables to either
connect to ssh, or obtain the root privilege, on host 1). It can be observed that all
four sequences now require two distinct zero day vulnerabilities. The seemingly
unnecessary hardening effort thus allows the network to resist one more zero day
attack. The hardened network can thus be considered relatively more secure,
since the likelihood of having more zero day vulnerabilities available at the
same time, in the same network, and exploitable by the same attacker, will be

3

lower 1. Therefore, the number of distinct zero day vulnerabilities can be used
to measure the relative security risk of different networks, which may otherwise
be indistinguishable by existing techniques.

On the other hand, the above discussions clearly oversimplify many impor-
tant issues. For example, we have assumed ssh on host 1 and 2 both correspond
to the same zero day vulnerability, which is not necessarily true; similarly, ex-
ploiting http and ssh may not necessarily lead to the root privilege; we have
not considered known vulnerabilities, which may interact with zero day vulner-
abilities; finally, an insider attack may directly give attackers a privilege without
any zero day vulnerability. We shall address such issues in the rest of this paper.

2 Modeling k-Zero Day safety

In this section, we define the k-zero day safety metric based on an abstract model
of network components.

2.1 The Network Model

Definition 1 gives an abstract model of network components relevant to measur-
ing zero day attacks (all notations will be summarized in Table 1). The model
will allow us to more formally define and reason about the proposed security
metric. Practical issues in instantiating the model will be addressed in Section 4.

Definition 1 (Network). Our network model has the following components:

– H , S, and P , which denotes the set of hosts (computers and networking
devices), services, and privileges, respectively.

– serv(.) : H → 2S and priv(.) : H → 2P , which denotes a function that
maps each host to a set of services and that of privileges, respectively.

– conn ⊆ H ×H , which denotes a connectivity relation.

In the model, hosts are meant to also include networking devices because
such devices are vulnerable to zero day attacks, and a compromised device may
re-enable accesses to blocked services (e.g., the firewall in Figure 1).

A service in the model is either remotely accessible over the network, in
which case called a remote service, or used to disable a remote service or net-
work connection, in which case called a security service. The model does not
include services or applications that can only be exploited locally for a privilege

1 This likelihood would decrease exponentially in the number of vulnerabilities if such vulnera-
bilities can be modeled as i.i.d. random variables, but we shall not assume any specific model
since the process of developing exploits is believed to be chaotic [24].

4

escalation (modeling such applications may not be feasible at all considering
that an attacker may install his/her own applications after obtaining accesses to
a host). On the other hand, the model includes remote services and connectiv-
ity currently disabled by security services, since the former may be re-enabled
through zero day attacks on the latter (e.g., ssh behind iptables in Figure 1).

In the model, privileges are meant to include those under which services are
running and those that can potentially be obtained through a privilege escalation.
The purpose of including the latter is not to model privilege escalation itself
but to model the strength of isolation techniques (e.g., sandboxing or virtual
machines) that may prevent such an escalation, as we shall elaborate shortly.

Example 1. In Figure 1, we have

– H = {0, 1, 2, F} (F denotes the firewall),
– conn = {〈0, F 〉, 〈0, 1〉, 〈0, 2〉, 〈1, F 〉, 〈1, 0〉, 〈1, 2〉, 〈2, F 〉, 〈2, 0〉, 〈2, 1〉} (we

include 〈0, 2〉 since it can be enabled by a zero day attack on the firewall),
– serv(1) = {http, ssh, iptables}, serv(2) = {ssh}, and serv(F) = {
firewall} (firewall is a security service and it disables connection 〈0, 2〉),

– priv(1) = priv(2) = {user, root}.

2.2 The Zero Day Attack Model

The very notion of unknown zero day vulnerability prevents us from assum-
ing vulnerability-specific properties, such as likelihood and severity. We can,
however, assume generic properties common to most vulnerabilities, as in Def-
inition 2 (our discussion will be limited to such zero day vulnerabilities).

Definition 2 (Zero Day Vulnerability). A zero day vulnerability is a vulnera-
bility whose details are unknown except that it satisfies the following 2.

1. It cannot be exploited unless
(a) a network connection exists between the source and destination hosts,
(b) a remote service with the vulnerability exists on the destination host,
(c) and the attacker already has a privilege on the source host.

2. Its exploitation can potentially yield any privilege on the destination host.

The assumptions essentially depict a worst-case scenario about the pre- and
post-conditions, respectively, of exploiting a zero day vulnerability. That is, a
particular zero day vulnerability may in reality require stronger pre-conditions
while implying weaker post-conditions than those stated above. This fact en-
sures our metric to always yield a conservative result (a future direction is to

2 A zero day vulnerability may refer to a known vulnerability without a fix in other contexts.

5

extend our work when weaker assumptions can be safely made). For a similar
purpose, we shall assign one zero day vulnerability to each service although in
reality a service may have more vulnerabilities (note that a more conservative
result of a metric is one that requires less zero day vulnerabilities).

We more formally state above assumptions in Definition 3 and 4. In Defi-
nition 3, the zero day exploit of a privilege will act as a placeholder when we
later model isolation techniques. In Definition 4, unlike the exploit of a known
vulnerability which has its unique pre- and post-conditions, all zero day exploits
share the same hard-coded conditions, as assumed above. Also note that the zero
day exploit of each security service has additional post-conditions, which indi-
cates the exploit will re-enable the disabled conditions. For zero day exploits of
a privilege, the pre-conditions include the privilege of every service since we
assume that a zero day exploit may potentially yield any privilege.

Definition 3 (Zero Day Exploit). For each h ∈ H and x ∈ (serv(h) ∪
priv(h)), denote by vx a zero day vulnerability. A zero day exploit is the triple

– 〈vs, h, h′〉 where 〈h, h′〉 ∈ conn and s ∈ serv(h′), or
– 〈vp, h, h〉 where p ∈ priv(h).

Definition 4 (Condition). Denote by E0 the set of all zero day exploits, C0 the
set of conditions (conn∪{〈x, h〉 : h ∈ H,x ∈ serv(h)∪priv(h)}), and define
functions pre(.) : E0 → C0 and post(.) : E0 → C0 as

– pre(〈vs, h, h′〉) = {〈h, h′〉, 〈s, h′〉, 〈pmin, h〉} for each s ∈ serv(h), where
pmin is the least privilege on h.

– pre(〈vp, h, h〉) = {ps : s ∈ serv(h), ps �= p} for each p ∈ priv(h).
– post(〈vs, h, h′〉) = {ps} for each remote service s with privilege ps.
– post(〈vs, h, h′〉) = {ps} ∪ Cs for each security service s, where Cs is the

set of conditions disabled by s.
– post(〈vp, h, h〉) = {〈p, h〉} for each p ∈ priv(h).

In Definition 5, a zero day attack graph is composed by relating both exploits
of known vulnerabilities and zero day exploits through common pre- and post-
conditions. In a zero day attack graph, the exploits of known vulnerabilities can
be considered as shortcuts that help attackers to satisfy a condition with less
zero day exploits. Therefore, exploits of known vulnerabilities here may also
be a trust relationship or a misconfigured application, as long as they serve the
same purpose of a shortcut for bypassing zero day exploits.

Definition 5 (Zero Day Attack Graph). Given the set of exploits of known
vulnerabilities E1 and their pre- and post-conditions C1, let E = E0 ∪ E1,

6

C = C0 ∪ C1, and extend pre(.) and post(.) to E → C (as the union of
relations). The directed graph G = 〈E ∪ C, {〈x, y〉 : (y ∈ E ∧ x ∈ pre(y)) ∨
(x ∈ E ∧ y ∈ post(x))}〉 is called a zero day attack graph.

In Definition 6, the notion of initial condition serves two purposes. First, it
includes all conditions that are not post-conditions of any exploit (which is the
usual interpretation of the notion). Second, it is meant to also include conditions
that may be satisfied as the result of insider attacks or user mistakes. In another
word, the effect of such attacks or mistakes is modeled as the capability of satis-
fying post-conditions of an exploit without first executing the exploit. Also note
that in the definition, an attack sequence is defined as a total order, which means
multiple attack sequences may correspond to the same set of partially ordered
exploits. However, this is not a limitation since our metric will not require the
attack sequence to be unique, as we shall show.

Instead of the usual way of modeling an asset as a single condition, we
take a more general approach. The logical connectives ∧, ∨, and ¬ respectively
model cases where multiple conditions must be satisfied altogether to cause a
damage (e.g., the availability of a file with multiple backups on different hosts),
cases where satisfying at least one condition will cause the damage (e.g., the
confidentiality of the aforementioned file), and cases where conditions are not to
be satisfied during an attack (for example, conditions that will trigger an alarm).
The asset value is introduced as the relative weight of independent assets.

Definition 6 (Initial Condition, Attack Sequence, and Asset). Given a zero
day attack graph G,

– the set of initial conditions is given as any CI ⊆ C satisfying CI ⊇ {c :
(∀e ∈ E)(c /∈ post(e))},

– an attack sequence is any sequence of exploits e1, e2, . . . , ej satisfying (∀i ∈
[1, j]) (∀c ∈ pre(ei)) (c ∈ CI) ∨ (∃x ∈ [1, i− 1] c ∈ post(ex)),

– an asset a is any logical proposition composed of conditions and the logic
connectives ∧, ∨, and ¬ for which an asset value v(a) is given through a
function v(.) : A→ [0,∞) where A denotes the set of all assets, and

– define a function seq(.) : A → 2Q as seq(a) = {e1, e2, . . . , ej : a ∈
post(ej)} where Q denotes the set of all attack sequences.

Example 2. Figure 2 shows the zero day attack graph of our running example,

– if we do not consider insider attacks or user mistakes, the following attack
sequences will lead to the asset 〈root, 2〉.
1. 〈vhttp, 0, 1〉, 〈vssh, 1, 2〉, 〈vroot, 2, 2〉
2. 〈viptables, 0, 1〉, 〈vssh, 1, 2〉, 〈vroot, 2, 2〉

7

3. 〈viptables, 0, 1〉, 〈vssh, 0, 1〉, 〈vssh, 1, 2〉, 〈vroot, 2, 2〉
4. 〈vfirewall, 0, F 〉, 〈vssh, 0, 2〉, 〈vroot, 2, 2〉

– if we consider insider attacks on host 1, only sequence 〈vssh, 1, 2〉, 〈vroot, 2, 2〉
and the fourth attack sequence above will be needed to compromise 〈root, 2〉.

– if we consider a different asset 〈root, 1〉 ∧ 〈root, 2〉, then only the first three
attack sequences above can compromise this asset.

<user ,0>

<v_iptables,0,1> <v_firewal l ,0 ,F><v_ht tp ,0 ,1>

<v_ssh ,0 ,1> <v_ssh ,0 ,2>

<firewall ,F> <0,F><iptables,1><0,1>

<ssh ,1>

<user ,1>

<v_root ,1 ,1> <v_ssh ,1 ,2>

<root ,1>

<root ,F> <0,2>

<http,1>

<ssh ,2>

<1,2>

<user ,2>

<v_root ,2 ,2>

<root ,2>

Fig. 2. An Example of Zero Day Attack Graph

2.3 The k-Zero Day Safety Model

In Definition 7, the relation ≡v models two distinct cases in which two zero
day exploits should only be counted once. First, both exploits involve the same
zero day vulnerability. Second, the exploit of a service is related to the exploit
of a privilege to indicate that the former will directly yield the privilege due to
the lack of isolation between the two (note that we do not model the details of
any involved privilege escalation). A probability can be associated to relation
≡v to indicate the degree of similarity or isolation, when such information is
available. Although the relationship between exploits has distinct meanings in
those two cases, the effect of such a relationship towards our metric will be the
same. Therefore, the relation ≡v models such relationships in a unified way.

Given two sets of zero day exploits, the function k0d(.) counts how many
exploits in their symmetric difference are distinct (that is, these exploits cannot
be related through≡v). In particular, if one of the sets is empty, then the function

8

k0d(.) will yield the number of distinct zero day exploits in the other set. When
a probabilistic approach is adopted in defining the relation ≡v, the function
k0d(.) can be revised to give the expected value (mean). The reason of defining
the function over the symmetric difference of two sets is given in Theorem 1.

Definition 7 (Relation ≡v and Metric Function k0d(.)).

– Define a relation ≡v ⊆ E0 × E0 such that e ≡v e′ indicates either e and
e′ are exploits of the same zero day vulnerability, or e = 〈vs, h1, h2〉, e′ =
〈vp, h2, h2〉 and exploiting s yields p. We say e and e′ are distinct if e �≡v e′.

– Define a function k0d(.) : 2E0×2E0 → [0,∞] as k0d(F, F ′) = max({ |F ′′| :
F ′′ ⊆ (F�F ′), (∀e1, e2 ∈ F ′′) (e1 �≡v e2)}) where |F ′′| denotes the car-
dinality of F ′′, max(.) denotes the maximum value in a set, and F�F ′

denotes the symmetric difference (that is, (F \ F ′) ∪ (F ′ \ F)).

Theorem 1. The function k0d(.) is a metric.

Proof: See Appendix A. �

In Definition 8, we apply the metric k0d(.) to assets, sets of assets, and a
network. First, k0d(a) indicates the minimum number of distinct zero day ex-
ploits required to compromise a. This number is unique for each asset, although
multiple attack sequences may compromise the asset. The empty set in the def-
inition can be interpreted as the conjunction of all initial conditions (which can
always be compromised without any zero day exploit). Second, the metric is
applied to a set of independent assets by taking the weighted average with asset
values as the weight. Finally, by applying the metric to all assets, we obtain a
measurement of a network’s resistance to potential zero day attacks.

Definition 8 (k-Zero Day Safety). Given a zero day attack graph G, the set of
initial conditions CI , and the set of assets A,

– for any a ∈ A, we use k0d(a) for min({k0d(q ∩ E0, φ) : q ∈ seq(a)})
where min(.) denotes the minimum value in a set and q stands for both a
sequence and a set. For any k ∈ [0, kod(a)), we say a is k-zero day safe.

– given any A′ ⊆ A, we use k0d(A′) for
∑

a∈A′(k0d(a) ·v(a))/∑a∈A′ v(a).
For any k ∈ [0, kod(A′)), we say A′ is k-zero day safe.

– in particular, when A′ = A, we say the network is k-zero day safe.

Example 3. For the running example, suppose all exploits of services involve
distinct vulnerabilities except 〈vssh, 0, 1〉, 〈vssh, 1, 2〉, and 〈vssh, 0, 2〉. Assume
ssh and http are not protected by isolation but iptables is protected. Then, the
relation ≡v is shown in the left-hand side of Table 1 where 1 indicates two
exploits are related and 0 the opposite (or, by adopting a probabilistic approach,
these can be regarded as the probabilities associated with the relation ≡v).

9

〈v
ip

ta
b
le
s
,0

,1
〉

〈v
h
tt
p
,0

,1
〉

〈v
s
s
h
,0

,1
〉

〈v
r
o
o
t
,1

,1
〉

〈v
s
s
h
,1

,2
〉

〈v
f
ir

e
w
a
ll
,0

,F
〉

〈v
s
s
h
,0

,2
〉

〈v
r
o
o
t
,2

,2
〉

〈viptables, 0, 1〉 1 0 0 0 0 0 0 0
〈vhttp, 0, 1〉 0 1 0 1 0 0 0 0
〈vssh, 0, 1〉 0 0 1 1 1 0 1 0
〈vroot, 1, 1〉 0 1 1 1 0 0 0 0
〈vssh, 1, 2〉 0 0 1 0 1 0 1 1
〈vfirewall, 0, F 〉 0 0 0 0 0 1 0 0
〈vssh, 0, 2〉 0 0 1 0 1 0 1 1
〈vroot, 2, 2〉 0 0 0 0 1 0 1 1

H , h A set of hosts, a host
S, s A set of services, a service
P , p A set of privileges, a privilege
serv(.) Services on a host
priv(.) Privileges on a host
conn Connectivity
vs, vp Zero day vulnerability
〈vx, h, h′〉 Zero day exploit
pre(.), post(.) Pre- and post-conditions
G Zero day attack graph
CI Initial conditions
e1, e2, . . . , ej Attack sequence
A Assets
seq(a) Attack sequences compromising a
≡v Relation of non-distinct exploits
k0d(.) The k-zero day safety metric

Table 1. An Example of Relation ≡v (Left) and the Notation Table (Right)

3 Computing k-Zero Day Safety

This section presents algorithms for computing the k-zero day safety.

3.1 Computing the Value of k

To compute the k-zero day safety of a network, we first derive a logic propo-
sition of each asset in terms of exploits. Then, each conjunctive clause in the
disjunctive normal form (DNF) of the derived proposition will correspond to a
minimal set of exploits that jointly compromise the asset. The value of k can
then be decided by applying the metric k0d(.) to each such conjunctive clause.

More precisely, we interpret a given zero day attack graph as a logic pro-
gram by regarding each exploit or condition as a Boolean variable and by hav-
ing a logic proposition c ← . for each initial condition c, a proposition e ←∧

c∈pre(e) c and a set of propositions {c ← e : c ∈ post(e)} for each pre- and
post-condition relationship, respectively. We can then apply Procedure k0d Bwd
shown in Figure 3 to obtain the value of k. The main loop (lines 1-8) computes
the k-zero day safety for each asset. The results of all iterations are aggregated
as the final output (line 9). The inner loop (lines 3-6) repetitively applies the
afore-mentioned logic propositions to derive a formula, which is converted into
its DNF (line 7) from which the k-zero day safety is computed (line 8).

Note that a negated condition given in the asset will be replaced with the
negation of exploits, whereas the latter will not be further processed (as indi-
cated in line 6). The interpretation is that in order not to satisfy a condition,
it suffices not to execute those exploits that have the condition as their post-
condition (on the other hand, to satisfy a condition requires more actions). Also
note that we have omitted the simplification of logic propositions using logic

10

Procedure k0d Bwd
Input: A zero day attack graph G, a set of assets A with the valuation function v(.)
Output: A non-negative real number k
Method:
1. For each asset a ∈ A
2. Let L be the logic proposition representing a
3. While at least one of the following is possible, do
4. Replace each initial condition c with TRUE
5. Replace each condition c with

∨
e∈{e′:c∈post(e′)} e

6. Replace each non-negated exploit e with e ∧ (
∧

c∈pre(e) c)

7. Let L1 ∨ L2 ∨ . . . Ln be the DNF of L
8. Let ka = min({k0d(Fi ∩ E0, φ) : Fi is the set of non-negated exploits in Li, 1 ≤ i ≤ n})
9. Return

∑
a∈A(ka · v(a))/∑a∈A v(a)

Fig. 3. Computing the Value of k

tautologies (such as e1 ∧ ¬e1 ≡ FALSE) and the handling of cycles in the
attack graph by maintaining the set of predecessors for each visited node [46].

Complexity The procedure’s worst-case complexity is exponential in the size of
the zero day attack graph. Specifically, the complexity is dominated by the size
of the derived proposition L and its DNF; both may be exponential. Indeed,
Theorem 2 shows that the problem of computing k-zero day safety is NP-hard.

Theorem 2. Given a zero day attack graph, an asset a, and any non-negative
integer k, the problem of finding an attack sequence q ∈ seq(a) that minimizes
k0d(q ∩ E0, φ) is NP-complete.

Proof: See Appendix B. �

Note that the intractability result here only implies that a single algorithm
is not likely to be found to efficiently determine k for all possible inputs (that
is, arbitrary zero day attack graphs). However, efficient solutions still exist for
practical purposes. We shall examine two such cases in the following.

3.2 Determining k-Zero Day Safety for a Given Small k

For many practical purposes, it may suffice to know that every asset in a net-
work is k-zero day safe for a given value of k, even though the network may in
reality be k′-zero day safe for some unknown k′ > k (note that we have shown
determining k′ to be intractable). We now describe a solution whose complexity
is polynomial in the size of a zero day attack graph if k is a constant compared
to this size. Roughly speaking, we attempt to compromise each asset with less
than k distinct zero day exploits through a forward search of limited depth. The
asset is not k-zero day safe if any branch of the search succeeds, and vice versa.

Specifically, Figure 4 shows the recursive Procedure k0d Fwd with two base
cases (lines 1-2 and 3-4, respectively) and one recursive case (lines 5-9). In

11

the first base case, the procedure returns FALSE when asset a can be com-
promised with less than k distinct zero day exploits in Te. The Sub-Procedure
k0d Reachable expands Te with all reachable known exploits since they do not
count in terms of the k0d(.) metric. In the second base case, the procedure re-
turns TRUE when the set Te already has more than k distinct zero day exploits
(regardless of whether a can be satisfied with Tc).

Procedure k0d Fwd
Input: A zero day attack graph G, an asset a, a real number k > 0, Te = φ, Tc = CI

//Te and Tc include the exploits and conditions visited so far, respectively
Output: TRUE or FALSE
Method:
1. If k0d reachable(Te, Tc) ∧ k0d(Te) < k
2. Return FALSE
3. ElseIf k0d(Te) ≥ k
4. Return TRUE
5. Else
6. For each e ∈ E0 \ Te satisfying pre(e) ⊆ Tc

7. If ¬ k0d Fwd(G, a, k, Te ∪ {e}, Tc ∪ post(e))
8. Return FALSE
9. Return TRUE

Sub-Procedure k0d Reachable
Input: Te, Tc

Output: TRUE or FALSE
Method:
10. While (∃e ∈ E1 \ Te)(pre(e) ⊆ Tc)
11. Let Te = Te ∪ {e}
12. Let Tc = Tc ∪ post(e)
13. Return (

∧
c∈Tc

c → a)

Fig. 4. Determining k-Zero Day Safety for a Given k

The main procedure enters the recursive case only when Te includes less
than k distinct zero day exploits and a cannot be satisfied with Tc. In this case,
the Sub-Procedure k0d Reachable must have already added all known exploits
and their post-conditions to Te and Tc, respectively. Now the main procedure
iteratively visits each zero day exploit e reachable from Tc (line 6), and starts
a recursive search from e (line 7). If no such e exists, the procedure will return
TRUE indicating the end of a sequence is reached (line 9). If any branch of
the search succeeds, FALSE will be recursively returned to indicate a is not
k-zero day safe (line 8); otherwise, TRUE is returned (line 9).

Complexity To find reachable known exploits from E1, the sub-procedure will
check the pre-conditions of each known exploit, which takes time O(|C| · |E1|).
This will be repeated upon adding an exploit to Te and its post-conditions to
Tc. Therefore, k0d Reachable takes time O(|C| · |E1|2), which is also the com-
plexity for the base cases of the main procedure since it dominates the com-
plexity of other steps. For the recursive case, we have the recurrence formula
t = O(|C| · |E1|2) + |E0| · t′ where t and t′ denote the complexity of the
recursive case and that of each recursive call. Since the recursive case cannot
be entered unless k0d(Te) < k and each recursive call will add one more
zero day exploit to Te, the maximum layers of recursion can be written as
l = max({|q| : q is an attack sequence satisfying k0d(q, φ) < k+1}). Solving

12

the recurrence formula, we have that t = |C| · |E1|2 · |E0|l. Therefore, the com-
plexity is polynomial in the size of the zero day attack graph if k is a constant.

3.3 Computing k-Zero Day Safety as Shortest Paths in a DAG

Although it is intractable to compute k for arbitrary zero day attack graphs, ef-
ficient solutions may exist for those satisfying special properties. We now show
such a case where the problem can be reduced to that of finding shortest paths
in a directed acyclic graph (DAG). Roughly speaking, we make two assump-
tions: First, most exploits will only require one condition on the remote host
(e.g., when a host is only used as a stepping stone, the condition could be a user
privilege on that host); second, zero day exploits will be distinct unless they are
on the same or adjacent hosts. Next, we informally describe our method while
leaving the detailed algorithm and complexity analysis to Appendix C.

The first assumption implies that we can derive a logical proposition (as
in Procedure k0d Bwd) separately for each host. In the resultant DNF, each
conjunctive clause will include at most one condition involving a remote host,
which means the asset can be expressed as a disjunction of conditions (without
considering exploits). We can thus repeat the same reasoning by regarding each
such condition as an asset on the involved remote host. Since the relationships
between all conditions are now disjunctive, we can regard each condition as the
vertex of a DAG (recall that cycles will be avoided) with their disjunctive rela-
tionships as edges, and exploits in the same conjunctive clause as edge weights.

In the weighted DAG, determining the value of k amounts to finding the
shortest path along which the function k0d(.) applied to all zero day exploits
will yield the minimum value. During a backward search, we keep two parts of
a distance for each edge: For those zero day exploits that may later be related to
others through ≡v, we keep them in a set since the function k0d(.) can not yet
be applied; for other exploits, we only keep the result value of applying k0d(.).
The second assumption above essentially ensures that the first part of the edge
distance will not grow quickly. The shortest distance can then be obtained using
a standard algorithm [9], taking polynomial time (more precisely, the complex-
ity is shown to be |H|4 · |E0| in Appendix C).

4 Discussions

In this section, we demonstrate the power of our metric through an example
application, network hardening, and discuss issues in instantiating the model.

Network Hardening Using the Metric Based on the proposed metric, network
hardening can be defined as making a network k-zero day safe for a larger k.

13

Such a concept generalizes the existing qualitative approach in [46], which es-
sentially achieves k > 0. Moreover, the metric immediately imply a collection
of hardening options. To see this, we first unfold k based on the model:

k = k0d(A) =
∑

a∈A

(k0d(a) · v(a))/
∑

a∈A

v(a) (1)

k0d(a) = min({k0d(q ∩ E0, φ) : q ∈ seq(a)}) (2)

k0d(q ∩ E0, φ
′) = max({ |F | : F ⊆ q ∩ E0, (∀e1, e2 ∈ F) (e1 �≡v e2)}) (3)

seq(a) = {e1, e2, . . . , ej : a ∈ post(ej), (4)

(∀i ∈ [1, j]) (∀c ∈ pre(ei)) (c ∈ CI) ∨ (∃x ∈ [1, i− 1] c ∈ post(ex))} (5)

Therefore, k can be increased by:

– Increasing services’ diversity to have more distinct exploits in Equation (3).
– Strengthening isolation techniques for a similar effect as above.
– Disabling initial conditions (e.g., removing a service or a connection) in CI

to yield longer attack sequences in above line (5) (part of Equation (4)).
– Enforcing more strict access control policies to lessen the risk of insider

attacks or user mistakes (thus removing conditions from CI in line (5)).
– Protecting assets with backups (conjunction of conditions) and detection

efforts (negation of conditions) to yield a longer sequence in Equation (4).
– Introducing more security services to regulate accesses to remote services

for a longer sequence in Equation (4).
– Patching known vulnerabilities such that less shortcuts for bypassing zero

day exploits yield a longer sequence in Equation (4).
– Prioritizing the above options based on the asset values in Equation (1) and

shortest attack sequences in Equation (2).

Although the above hardening options are nothing new, their effectiveness is
now quantified in a simple, intuitive way. The cost of network hardening can be
easily justified, not based upon speculation or good will, but with a larger k.

Instantiating the Model Since the proposed metric and algorithms are based on
an abstract model of networks, how to instantiate the model for given networks
is an equally important (and admittedly difficult) issue. We now address several
key aspects of the issue while leaving more research to future work.

– While instantiating the model, an uncertain situation can be dealt with by ei-
ther taking a conservative assumption under which the metric yields a lower
k (e.g., any host should be included unless it is believed to be absolutely
immune from zero day attacks) or by taking a probabilistic approach (e.g.,
we have discussed how associating a probability to relation ≡v can help to
model the degree of similarity in vulnerabilities and strength of isolation).
Our future work will further explore such probabilistic approaches.

14

– An extremely conservative assumption may yield a trivial result (e.g., no
network is 1-zero day safe, if insider attacks are considered possible on ev-
ery host). While such an assumption may be the safest, it is also the least
helpful in terms of improving the security since nothing would be helpful.

– The remote services and network connectivity must be identified by exam-
ining hosts’ configuration. A network scanning is insufficient since it will
not reveal services or connectivity currently disabled by security services
(e.g., ssh behind iptables in Figure 1). The model is thus more concerned
about the existence, instead of the current reachability, of a service or host.

– A zero day attack graph cannot be obtained by injecting zero day exploits
into an existing attack graph of known vulnerabilities. The reason is that
some unreachable exploits may be discarded in generating an attack graph
of known vulnerabilities [1], whereas such exploits may indeed serve as
shortcuts for bypassing zero day exploits in a zero day attack graph.

– The model itself does not provide a means for determining which conditions
are likely to be subject to insider attacks or user mistakes, which should be
determined based on knowledge about access control polices (which users
are allowed to do what on which hosts) and how trustworthy each user is.

5 Related Work

Standardization efforts on vulnerability assessment include the Common Vul-
nerability Scoring System (CVSS) [26, 30] which measures vulnerabilities in
isolation. The NIST’s efforts on standardizing security metrics are also given
in [27] and more recently in [43]. The research on security metrics has attracted
much attention lately [20, 15, 2, 17]. Earlier work include the intuitive proper-
ties of a security metric and a metric in terms of time and efforts based on a
Markov model [7, 8, 31]. More recently, an attack resistance metric based on
attack graph is proposed in [48, 47] and another approach derives probabilis-
tic scores for a network by combining CVSS scores [45, 13]. The minimum
efforts required for executing each exploit is used as a metric in [3]. Another
approach measures the relative risk using the least set of initial conditions under
which an attack is possible [35]. The cost of network hardening is quantified
in [29, 46]. The use of failure-time analysis for developing risk management
metrics is discussed in [41]. A mean time-to-compromise metric is proposed
based on the predator state-space model (SSM) used in the biological sciences
in [22]. Security metrics are also developed for specific applications, such as the
information-theoretic metrics for measuring the effectiveness of IDSs [21, 14],
and for specific threats, such as botnets [16] and traffic analysis [28].

Relevant work exist in other areas. Design principles are proposed for de-
veloping metrics of trust [38, 39], which we found useful in our work. A metric

15

for measuring the trust in an identity established through overlapping chains of
certificates is proposed in [4]. Security is considered as another risk that needs
to be managed alongside all business risks [12]. A series of work on attack sur-
face measures how likely a software is vulnerable to attacks based on the degree
of exposure [18, 32–34, 23]. Our work borrows from attack surface the idea
of focusing on interfaces, instead of internal details, of a system. However, we
apply the idea to a network of computer systems, instead of a single software
system. Parallel to the study of security metrics, fault tolerance algorithms rely
on replication and diversity to improve the availability of services [5, 6]. Our
metric provides a means for measuring the effectiveness of such algorithms in
networks. Finally, our work is partially inspired by the well known data privacy
metric k-anonymity [37] which measures the amount of privacy using an integer
regardless of specific application semantic.

To generate attack graphs, topological vulnerability analysis enumerates
potential sequences of exploits of known vulnerabilities [7, 11, 31, 36, 49, 44].
Based on whether a search starts from the initial state or the final state, such an
analysis can be forward [36, 44] or backward [40, 42]. In our study, we adopt the
graph-based representation of attack graphs proposed in [1]. To the best of our
knowledge, only limited work exist on measuring the effect of zero day attacks
on networks. An empirical study of the total number of zero day vulnerabili-
ties available on a single day is given based on existing data [25], and an effort
on ordering different applications by the seriousness of consequences of having
one a single zero day vulnerability (which is parallel to our work) [19].

6 Conclusion

We have proposed k-zero day safety as a novel security metric for measuring
the relative security of networks against potential zero day attacks. In doing so,
we have transformed the unmeasureability of unknown vulnerabilities from a
commonly perceived obstacle to an opportunity for security metrics. While the
general problem of computing the metric is intractable, we have demonstrated
that practical security issues can be formulated and solved in polynomial time.
For future work, we shall elaborate on probabilistic modeling approaches and
the algorithms for hardening networks based on the metric; we shall also inte-
grate the proposed algorithms into existing attack graph-based security tools so
to validate their real world effectiveness. The proposed metric leads to many
other interesting future directions, such as statistical modeling of network secu-
rity using the metric, extensions to the metric with relaxed assumptions about
zero day vulnerabilities, and applying the metric to special applications such as
measuring the risk of worms and botnets.

16

References

1. P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network vulnerability
analysis. In Proceedings of the 9th ACM Conference on Computer and Communications
Security (CCS’02), 2002.

2. A. C. S. Associates. Workshop on. In Information Security System Scoring and Ranking,
2001.

3. D. Balzarotti, M. Monga, and S. Sicari. Assessing the risk of using vulnerable components.
In Proceedings of the 1st Workshop on Quality of Protection, 2005.

4. T. Beth, M. Borcherding, and B. Klein. Valuation of trust in open networks. In Proceedings
of the Third European Symposium on Research in Computer Security (ESORICS’94), pages
3–18, 1994.

5. M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst., 20(4):398–461, 2002.

6. B.-G. Chun, P. Maniatis, and S. Shenker. Diverse replication for single-machine byzantine-
fault tolerance. In ATC’08: USENIX 2008 Annual Technical Conference on Annual Technical
Conference, pages 287–292, Berkeley, CA, USA, 2008. USENIX Association.

7. M. Dacier. Towards quantitative evaluation of computer security. Ph.D. Thesis, Institut
National Polytechnique de Toulouse, 1994.

8. M. Dacier, Y. Deswarte, and M. Kaaniche. Quantitative assessment of operational security:
Models and tools. Technical Report 96493, 1996.

9. E. W. Dijkstra. A note on two problems in connection with graphs. Numerische Mathematik,
1:269271, 1959.

10. J. Doob. Measure Theory. Springer-Verlag, 1994.
11. D. Farmer and E. Spafford. The COPS security checker system. In USENIX Summer, pages

165–170, 1990.
12. S. N. Foley. Security risk management using internal controls. In WISG ’09: Proceedings of

the first ACM workshop on Information security governance, pages 59–64, New York, NY,
USA, 2009. ACM.

13. M. Frigault, L. Wang, A. Singhal, and S. Jajodia. Measuring network security using dynamic
bayesian network. In Proceedings of ACM workshop on Quality of protection (QoP’08),
2008.

14. G. Gu, P. Fogla, D. Dagon, W. Lee, and B. Skoric. Towards an information-theoretic frame-
work for analyzing intrusion detection systems. In European Symposium on Research in
Computer Security, pages 527–546, 2006.

15. D. Herrmann. Complete Guide to Security and Privacy Metrics. Auerbach Publications,
2007.

16. T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling. Measuring and detecting fast-flux service
networks. In Annual Network and Distributed System Security Symposium, 2008.

17. K. Hoo. Metrics of network security. White Paper, 2004.
18. M. Howard, J. Pincus, and J. Wing. Measuring relative attack surfaces. In Workshop on

Advanced Developments in Software and Systems Security, 2003.
19. K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer. Modeling modern network

attacks and countermeasures using attack graphs. In ACSAC ’09: Proceedings of the 2009
Annual Computer Security Applications Conference, pages 117–126, Washington, DC, USA,
2009. IEEE Computer Society.

20. A. Jaquith. Security Merics: Replacing Fear Uncertainity and Doubt. Addison Wesley,
2007.

21. W. Lee and D. Xiang. Information-theoretic measures for anomaly detection. In Proceedings
of the 2001 IEEE Symposium on Security and Privacy, page 130, Washington, DC, USA,
2001. IEEE Computer Society.

17

22. D. J. Leversage and E. J. Byres. Estimating a system’s mean time-to-compromise. IEEE
Security and Privacy, 6(1):52–60, 2008.

23. K. Manadhata, J. Wing, M. Flynn, and M. McQueen. Measuring the attack surfaces of two
ftp daemons. In ACM workshop on Quality of Protection, 2006.

24. J. McHugh. Quality of protection: Measuring the unmeasurable? In Proceedings of the 2nd
ACM workshop on Quality of protection (QoP’06), pages 1–2, 2006.

25. M. McQueen, T. McQueen, W. Boyer, and M. Chaffin. Empirical estimates and observations
of 0day vulnerabilities. Hawaii International Conference on System Sciences, 0:1–12, 2009.

26. P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring system. IEEE
Security & Privacy Magazine, 4(6):85–89, 2006.

27. National Institute of Standards and Technology. Technology assessment: Methods for mea-
suring the level of computer security. NIST Special Publication 500-133, 1985.

28. R. E. Newman, I. S. Moskowitz, P. F. Syverson, and A. Serjantov. Metrics for trafic analysis
prevention. In Privacy Enhancing Technologies, pages 48–65, 2003.

29. S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs. Efficient minimum-cost network harden-
ing via exploit dependency grpahs. In Proceedings of the 19th Annual Computer Security
Applications Conference (ACSAC’03), 2003.

30. National vulnerability database. available at: http://www.nvd.org, May 9, 2008.
31. R. Ortalo, Y. Deswarte, and M. Kaaniche. Experimenting with quantitative evaluation tools

for monitoring operational security. IEEE Trans. Software Eng., 25(5):633–650, 1999.
32. J. W. P. Manadhata. Measuring a system’s attack surface. Technical Report CMU-CS-04-

102, 2004.
33. J. W. P. Manadhata. An attack surface metric. Technical Report CMU-CS-05-155, 2005.
34. J. W. P. Manadhata. An attack surface metric. In First Workshop on Security Metrics (Met-

riCon), 2006.
35. J. Pamula, S. Jajodia, P. Ammann, and V. Swarup. A weakest-adversary security metric

for network configuration security analysis. In Proceedings of the 2nd ACM workshop on
Quality of protection, pages 31–38, New York, NY, USA, 2006. ACM Press.

36. C. Phillips and L. Swiler. A graph-based system for network-vulnerability analysis. In
Proceedings of the New Security Paradigms Workshop (NSPW’98), 1998.

37. P.Samarati. Protecting respondents’ identities in microdata release. In IEEE Transactions
on Knowledge and Data Engineering (TKDE), pages 1010–1027, 2001.

38. M. Reiter and S. Stubblebine. Authentication metric analysis and design. ACM Transactions
on Information and System Security, 2(2):138–158, 5 1999.

39. M. K. Reiter and S. G. Stubblebine. Toward acceptable metrics of authentication. In Pro-
ceedings of the 1997 IEEE Symposium on Security and Privacy, page 10, Washington, DC,
USA, 1997. IEEE Computer Society.

40. R. Ritchey and P. Ammann. Using model checking to analyze network vulnerabilities. In
Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages 156–165, 2000.

41. J. J. C. H. Ryan and D. J. Ryan. Performance metrics for information security risk manage-
ment. IEEE Security and Privacy, 6(5):38–44, 2008.

42. O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. Automated generation and analysis
of attack graphs. In Proceedings of the 2002 IEEE Symposium on Security and Privacy,
2002.

43. M. Swanson, N. Bartol, J. Sabato, J. Hash, and L. Graffo. Security metrics guide for infor-
mation technology systems. NIST Special Publication 800-55, 2003.

44. L. Swiler, C. Phillips, D. Ellis, and S. Chakerian. Computer attack graph generation tool.
In Proceedings of the DARPA Information Survivability Conference & Exposition II (DIS-
CEX’01), 2001.

18

45. L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack graph-based probabilistic
security metric. In Proceedings of The 22nd Annual IFIP WG 11.3 Working Conference on
Data and Applications Security (DBSec’08), 2008.

46. L. Wang, S. Noel, and S. Jajodia. Minimum-cost network hardening using attack graphs.
Computer Communications, 29(18):3812–3824, 11 2006.

47. L. Wang, A. Singhal, and S. Jajodia. Measuring network security using attack graphs. In
Proceedings of the 3rd ACM workshop on Quality of protection (QoP’07), New York, NY,
USA, 2007. ACM Press.

48. L. Wang, A. Singhal, and S. Jajodia. Measuring the overall security of network configu-
rations using attack graphs. In Proceedings of 21th IFIP WG 11.3 Working Conference on
Data and Applications Security (DBSec’07), 2007.

49. D. Zerkle and K. Levitt. Netkuang - a multi-host configuration vulnerability checker. In
Proceedings of the 6th USENIX Unix Security Symposium (USENIX’96), 1996.

Appendix A: Proof of Theorem 1

Proof: This is to prove, for all F, F ′, F ′′ ⊆ E0, the following hold [10].

1. k0d(F, F ′) = 0 iff F = F ′: This is straightforward since k0d(F, F ′) = 0
iff F�F ′ = φ, and the latter is equivalent to F = F ′.

2. k0d(F, F ′) = k0d(F ′, F): This property is satisfied by the symmetric dif-
ference.

3. k0d(F, F ′) + k0d(F ′, F ′′) ≥ k0d(F, F ′′): Denote by tmp(G) the function
max({ |G′| : G′ ⊆ G, ∀e1, e2 ∈ G′ (e1 �≡v e2)}). First, the symmet-
ric difference satisfies the triangle inclusion relation F�F ′′ ⊂ (F�F ′) ∪
(F ′�F ′′) [10]. So, tmp((F�F ′)∪(F ′�F ′′)) ≥ tmp(F�F ′′) holds. Next,
we only need to show tmp(F�F ′) + tmp(F ′�F ′′) ≥ tmp((F�F ′) ∪
(F ′�F ′′)) is true. It suffices to show the function tmp(.) to be subadditive,
that is, tmp(G)+ tmp(G′) ≥ tmp(G∪G′) holds for any G,G′ ⊆ E0. This
follows from the fact that if the relation e ≡v e′ holds for any e, e′ ∈ G (or
e, e′ ∈ G′), it also holds in G ∪G′ (the converse is not necessarily true).

�

Appendix B: Proof of Theorem 2

Proof: First, the problem is NP, since whether a given sequence of exploits q
satisfies q ∈ seq(a)∧k0d(q∩E0, φ) = k can be easily determined in polynomial
time in the size of the zero day attack graph.

Next, we reduce the NP-hard problem of finding the minimum attack (that
is, an attack sequence with the minimum number of exploits) in attack graph [1,
42] to the current problem. First of all, the reduction is not trivial. More pre-
cisely, the reduction cannot be trivially achieved by simply replacing each known

19

exploit with a zero day exploit in a given attack graph of know exploits, be-
cause, unlike the former, the latter has a fixed number of hard-coded pre- and
post-conditions that may prevent them from fitting in the position of a known
exploit.

We construct a zero day attack graph G′ by injecting a zero day exploit
before each known exploit. Specifically, first let G′ = G. Then, for each known
exploit e of a service s from a source host h1 to a different destination host h2,
we inject a zero day exploit e′ with the post-conditions {〈s, h2〉, puseless} where
puserless is a privilege designed not to be the pre-condition of any exploit (e′

can be interpreted as exploiting a vulnerability in a security service, such as a
personal firewall, that blocks accesses to the service s on h2 from h1). We then
have the following two facts. First, executing e requires e′ to be executed first;
conversely, if e′ needs to be executed, then the only reason must be to satisfy the
condition 〈s, h2〉 and consequently execute e. That is, any attack sequence in
G′ will include either both e and e′, or none of them. Second, among the three
conditions in pre(e′) = {〈s′, h2〉, 〈h1, h2〉, 〈pleast, h1〉}, the first is an initial
condition and the last two are also members of pre(e). Therefore, the injection
of e′ does not change the logical structure of the attack graph (more precisely,
G and G′ are isomorphic if we regard e and e′ as a single exploit and ignore the
initial condition 〈s′, h2〉).

Next, for each known exploit e involving the same source and destination
host h, we replace e with a zero day exploit e′ and a known exploit e′′ satisfying
that post(e′′) = post(e), pre(e′′) = pre(e)\{〈p, h〉}∪{〈p′, h〉}where 〈p, h〉 ∈
pre(e) and {〈p′, h〉} are two privileges. We also let post(e′) = {〈p′, h〉}, and
design the relation ≡v in such a way that e′ is not related to any other zero day
exploits in h through ≡v. We then have two similar facts as above. First, any
attack sequence in G′ will include either both e and e′, or none of them. Second,
the injection of e′ does not change the logical structure of the attack graph.

Based on the above construction, given any asset a, for any attack sequence
q′ ∈ seq(a) in G′, the known exploits in q also form an attack sequence q ∈
seq(a) in G (note that a will always be the post-condition of known exploits due
to our construction). Moreover, if we design ≡v in such a way that no two zero
day exploits are related by ≡v, then we have | q |= k0d(q′ ∩E0, φ). Therefore,
for any non-negative integer k, finding q′ in G′ to minimize k0d(q′∩E0, φ) will
immediately yield q in G that also minimizes | q |, and the latter is essentially
the minimum attack problem. This shows the former to be an NP-hard problem
and concludes the proof. �

20

Appendix C: A Procedure for Computing k-Zero Day Safety as
Shortest Paths in a DAG

In Figure 5, Procedure k0d Shortest provides a more precise description of the
method informally discussed in Section 3.3. Sub Procedure k0d Graph is used
to build a DAG based on a given zero day attack graph and asset. First, the
sub-procedure derives a logical proposition of the asset in terms of exploits and
conditions using the same statements as in Procedure k0d Backward (line 17),
but stops whenever the DNF of the logic proposition includes at most one condi-
tion in each conjunctive clause (lines 18-19). The sub-procedure then adds each
such conjunctive clause to the result DAG (line 20) by regarding each condition
as a vertex pointed to by the asset (lines 21-22), and the set of exploits in the
same conjunctive clause as the edge weight (line 23). The sub-procedure then
recursively expands on each such condition (line 24). If a conjunctive clause
does not include a condition (meaning that only initial conditions are required),
a dummy vertex is added to represent the collection of deleted initial conditions
(line 26-27).

The main procedure then imitates a standard algorithm for finding the short-
est path in a DAG [9]. More specifically, the vertices are processed based on
a topological sort (line 3); and the distance of the source vertex is initialized
as 0 while that of other vertices as infinity (line 4); upon processing a vertex
(line 5-6), each of its neighbors (line 7) will be updated with potentially shorter
distances via the current vertex (lines 9-14). Finally, the main procedure returns
the minimum shortest distance from the asset to a dummy vertex (representing
initial conditions) as the result k.

The following modifications to the standard shortest distance algorithm are
designed to take into account zero day exploits related by ≡v. First, instead of
a single number, each distance is now a set of pairs 〈x, y〉 where x denotes the
result of applying k0d(.) to exploits that will not later be related to others by≡v,
whereas y denotes the set of zero day exploits that may later be related to others.
More than one pairs may be necessary for a distance since they are incomparable
due to the latter. Second, the reachable edges are collected in order to determine
whether an exploit may later be related to others by≡v (line 8). Third, instead of
simply calculating the minimum distance, both parts of each distance pair must
be computed based on the distance of current vertex and the edge weight (line
10-11). The new distance pair will then immediately be added (line 12). Finally,
after all distance pairs are added, the set of distance pairs is examined again to
remove those that cannot be the minimum distance even when considering the
effect of relation ≡v (line 13-14).

21

Procedure k0d Shortest
Input: A zero day attack graph G, an asset L
Output: A non-negative real number k
Method:
1. Let Gs be a directed acyclic graph (DAG) with a vertex L and elabel be an empty array
2. Let 〈Gs, elabel〉 = k0d Graph(G,L,Gs, elabel)
3. Let vlist be any topological sort of Gs

4. Let distL = {〈0, φ〉} and distx = {〈∞, φ〉} for any other vertex x
5. While vlist is not empty, do
6. Delete the first vertex u from vlist
7. For each outgoing edge 〈u, v〉 of u
8. Let elist be the set of all edges reachable from v
9. For each 〈x, y〉 ∈ distu
10. Let y′ = {e : e ∈ y ∪ elabel[〈u, v〉], ∃e′ ∈ elist ∃e′′ ∈ elabel[e′] e ≡v e′′}
11. Let x′ = x+ k0d((y ∪ elabel[〈u, v〉] \ y′) ∩ E0, φ)
12. Let distv = distv ∪ 〈x′, y′〉
13. While (∃〈x, y〉, 〈x′, y′〉 ∈ distv)(x ≥ (x′ + k0d(y′ ∩ E0, φ)))
14. Delete 〈x, y〉 from distv
15. Return min({x : 〈x, φ〉 ∈ distd, d is a dummy vertex })
Sub Procedure k0d Graph
Input: A zero day attack graph G, an asset L, a DAG Gs, an array elabel
Output: Updated Gs and elable
Method:
16. Do
17. (Lines 4-6 of Procedure k0d Backward)
18. Let L be its DNF
19. While there exists a conjunctive clause l in L including more than one condition
20. for each conjunctive clause l in L
21. If l includes a condition c
22. Add vertex c and edge 〈L, c〉 to Gs

23. Let elabel[〈L, c〉] be the set of exploits in l
24. Let 〈Gs, elabel〉 = k0d Graph(G, c,Gs, elabel) //Recursive call with c as L
25. Else
26. Add a dummy vertex d and edge 〈L, d〉 to Gs

27. Let elabel[〈L, d〉] be the set of exploits in l
28. Return Gs

Fig. 5. Computing k-Zero Day Safety as Shortest Paths in a DAG

Example 4. For our running example, Figure 6 illustrates the execution of Pro-
cedure k0d Shortest. Each edge is labeled with the edge weight elabel and each
vertex with the distance dist.

Complexity The complexity of the procedure will depend on how well the afore-
mentioned assumptions hold on a given zero day attack graph. First, the com-
plexity of Sub-Procedure k0d Graph is exponential in the number of exploits
and conditions involved in the loop at lines 16-19. Therefore, if the first as-
sumption perfectly holds, this loop will always terminate after processing a sin-
gle host. If we regard the number of exploits and conditions on each host as a
constant, then the complexity of the sub-procedure will be linear in the number
of hosts (that is, a constant time is required for deriving and processing L for

22

〈root,2〉 〈0,∅〉

〈vroot,2,2〉

〈user,2〉 〈0, 〈vroot,2,2〉〉
 >

〈vssh,1,2〉

〈user,1〉

1

〈vhttp,0,1〉

2

〈viptables,0,1〉

3

〈ssh,1〉

〈vssh,0,1〉

〈viptables,0,1〉

〈0, 〈vssh,1,2〉〉
 >

〈0,2〉 〈1,∅〉
 >

〈vssh,0,2〉

〈vfirewall,0,F〉

4 〈2,∅〉

〈2,∅〉
〈2,∅〉

〈2,∅〉

〈1,∅〉
 >

Fig. 6. An Example of Executing Procedure k0d Shortest

each host). Second, the complexity of the main procedure depends on the size of
the distance of each vertex. If the second assumption holds perfectly such that
each distance has a negligible size, then the complexity of the main procedure
will be dominated by processing the reachable edges in elist and their labels
elabel (line 10). Since each edge in Gs is visited exactly once by the main loop
and the size of elist is linear in the number of such edges, the processing of elist
takes quadratic time in the number of edges in Gs, which is roughly O(|H|4)
(by the first assumption, each host corresponds to a constant number of vertices
in Gs). Finally, multiplying this by the size of elabel, we have the complexity
|H|4 · |E0|.

23

