9 research outputs found

    The study on SFLAB GanedenBC30 viability on baking products during storage

    Get PDF
    AbstractFor understanding Bacillus coagulans, GanedenBC30 was used in different ways to added in raw dough and examine their viability after baking. Eight different baking products: (1) chrysanthemum cookies, (2) egg pastry cakes, (3) mooncakes, (4) muffins, (5) polo breads, (6) soda cookies, (7) sponge cakes, and (8) toasts were made from 0.5% GanedenBC30 added to their dough in two ways: (a) flour powder or (b) egg yolk. Then the (a) pH value, (b) titratable acidity, (c) GanedenBC30 counts, and (d) viability GanedenBC30 of eight different baking products were determined after storing at 4oC for 0, 3, 6, 9, 12, 15 days, or 25oC for 0, 3, 6 days. The eight types of raw dough had relatively lower pH values and rise after baking. The titratable acidity of the eight types of dough was relatively higher, and declined after baking. However, the pH value and titratable acidity of the eight baking products remained the same after 9 days at 4oC. On the other hand, the GanedenBC30 counts in the eight baking products were less than their raw dough GanedenBC30 levels. For storage at both 4 and 25oC, the results show the GanedenBC30 viability of baking products decreased with storage days. The dough made by flour powder and baking showed higher GanedenBC30 viability than by egg yolk. GanedenBC30 are good candidates for baking product use, both in lactic acid production and probiotic preparations

    鮪魚蒸煮液蛋白質酵素水解物之製備與抗氧化機能之研究

    No full text
    第一部份 本研究即利用四種市售蛋白質水解,探討蛋白質水解對鮪魚蒸煮液中蛋白質的水解作用,以及所得水解物經超過濾機 (Ultrafiltration, UF, MWCO 10 kDa) 分劃後進行逆滲透 (Reverse Osmosis, RO) 濃縮試製成調味品。結果顯示,鮪魚蒸煮所得蒸煮液之原 pH 為 6.28,總固形物含量 6.45%,其中蛋白質佔4.09%、灰分佔 0.86%。鮪魚蒸煮液中蛋白質懸浮顆粒在 pH 為 5.5~6.5 時有最大溶解度。將蛋白質水解應用於鮪魚蒸煮液時,蛋白質水解之濃度以 0.5% 水溶液為宜,且與鮪魚蒸煮液之最適當作用比例分別為 25:1 (O-R, A-O 和 T-P) 與20:1 (v/v) (P-A)。並經 5 小時水解作用後,O-R 和 A-O 蛋白質水解之水解度約 32% 左右,且 A-O 蛋白質水解之 Vmax/Km 顯著優於O-R、T-P 和 P-A 蛋白質水解,並分析游離胺基酸組成可知,具呈味成分之胺基酸含量相對較高。經過超過濾分劃後,透過液中的小分子蛋白質 (如胜類物質) 含量分別為 2.54 (O-R)、2.46 (A-O)、2.41 (T-P) 和 2.36% (P-A),而 T-P 與 P-A 水解物之總游離胺基酸含量為分別 6.72 和 6.26 mmole/100 mL 亦明顯較 O-R 水解物 (7.52 mmole/100 mL) 和 A-O 水解物 (7.93 mmole/100 mL) 為低。經膠過濾分析得知,四種蛋白質水解液的分子量分佈大多在 2 kDa 以下。將蛋白質水解物以 RO 濃縮後進行官能品評試驗,在顏色、氣味上四種濃縮水解物並無明顯差異 (p < 0.05)。但受苦味之影響,在整體接受性上,以 P-A 水解物明顯較 A-O 水解物為差。 第二部份 本研究利用三種蛋白質水解 Protease XXIII (AO)、Orientase (OR) 和 Papain (PA) 在其各適溫 (依序為37℃、50℃、25℃)進行水解,探討所得水解物之抗氧化特性。結果顯示,在各水解液中,以 AO水解 150 min (水解率為 26%)者之還原力 0.98 為最高。取經 AO 水解 150 min 之水解物 (以AOH表示),利用 Sephadex G-25 膠過濾法分劃後,可得 5 個主要區分物; A 區分物(分子量大於 4,500 Da)、B和C (1,400~390 Da)、D和E (小於 390 Da)。在固形物濃度為 5 mg/mL 時,B、C 和 E 區分物的還原力依序為 0.59、0.96、0.81,而 A 和 D 區分物較弱,分別僅為 0.09 和 0.10;B、C 和 E區分物之抗氧化活性較高,依序為 87.6%、94.4% 和 85.0%;清除 DPPH (1,1-diphenyl-2-picrylhydrazyl) 自由基的效果則以 B 和 C 區分物較佳,清除效果分別為 94.3% 和 75.2%。 從分子量分佈結果可知,僅 B 和 C 區分物中的胜物質擁有較佳的抗氧化特性。利用高效液相層析法分離、純化 B 和 C 區分物中的胜物質時,有七種活性胜物質檢出。經胺基酸分析與定序,此七種活性胜物質是由 4~8 個胺基酸殘基所組成,其中包括有 Val、Ser、Pro、His、Ala、Asp、Lys、Glu、Gly 和 Tyr 等十種不同的胺基酸殘基。Part I In this work, four commercial proteases were applied to hydrolyze the proteins contained in the cooking juice produced by a canned tuna plant. Our objectives were to convert the recovered protein into free amino acids and small peptides through enzymatic hydrolysis as well as to separate and concentrate them as condiments, using UF and RO. The results showed that, the total solids, crude protein and ash of tuna cooking juice were 6.45, 4.09 and 0.86%, and pH was 6.28. The proteins suspending as coagulates in tuna cooking juice showed the highest water-solubility at pH 5.5-6.5. When the enzymes were applied to the tuna cooking juice, results showed that the best hydrolyzing conditions with respect to the ratio of tuna cooking juice and enzyme was 25:1 (v/v) for O-R, A-O and T-P, and 20:1 for P-A with adding 0.5% protease solution. After incubation for 5 h, the degree of protein hydrolysis in tuna cooking juice was about 32% for O-R and A-O hydrolyzates, however, A-O hydrolyzate displayed greater quantities for the ratio of Vmax/Km value than others. For free amino acid component analysis, we could find the taste compound contents were higher in A-O hydrolyzate than others. Following UF,in the permeate, the contents of low molecular proteins (peptide substrate) were 2.54 (O-R), 2.46 (A-O), 2.41 (T-P) and 2.36% (P-A), respectively, moreover, the total free amino acids contents for T-P and P-A hydrolyzates were 6.72 and 6.26 mmole/100 mL, which were lower than those of O-R (7.52 mmole/100 mL) and A-O (7.93 mmole/100 mL). Gel filtration determined the molecular weight lower than 2 kDa distributes in the hydrolyzates of O-R, A-O, T-P and P-A proteases. After RO treatment, sensory evaluation showed that the color and flavor of the four protein hydrolyzates were no significant differences (p < 0.05), however, the overall quality of P-A hydrolyzate was less acceptable compared with that of A-O hydrolyzate owing to the bitterness. Part II In this study, the antioxidative properties of the tuna cooking juice hydrolysate prepared with three commercial proteases, protease XXIII (AO), orientase (OR) and papain (PA), at their optimum temperatures (37℃, 50℃ and 25℃, respectively) were investigated. Results showed that, the AO hydrolysate (AOH) showed the best reducing power (about 0.98) by hydrolyzing for 150 min with DH of 26%. The AOH was subjected to a Sephadex G-25 gel filtration chromatography, and five major fractions, A (Mr > 4,500), B and C (1,400 > Mr > 390), D and E (Mr < 390), were obtained. When the solid concentration was 5 mg/mL, the reducing power of fractions, B, C and E was 0.59, 0.96 and 0.81, respectively; however, fractions A and D showed lower reducing power values. Fractions B, C and E showed high antioxidant activity: 87.6, 94.4 and 85.0%, respectively. Fractions B and C exhibited scavenging effects on DPPH (1,1-diphenyl-2-picrylhydrazyl) radical, and the values were 94.3 and 75.2%, respectively. According to molecular weight distribution, the active peptides were only in B and C fractions. To separate and purify active peptides obtained from AO hydrolyzates with HPLC were investigated. Seven antioxidative peptides were isolated from the hydrolyzates (mixed B and C fractions) by reversed-phase HPLC. The peptides were comprised the residues of 4-8 amino acids in the sequences, including Val, Ser, Pro, His, Ala, Asp, Lys, Glu, Gly, or Tyr.第一章 緒言 1 第二章 研究背景 5 第一節 台灣水產加工現況 5 1.1 水產加工一般概況 5 1.2 各種水產加工品內外銷現況 5 1.2.1 冷凍加工品 6 1.2.2 水產罐頭食品 6 1.2.3 煉製品 7 1.2.4 乾、燻、鹽製品及其他製品 7 第二節 鮪魚罐頭食品製造 9 2.1 鮪魚之種類 9 2.1.1 長鰭鮪 10 2.1.2 黃鰭鮪 10 2.1.3 大目鮪 11 2.1.4 黑鮪 11 2.1.5小黃鰭鮪 12 2.2 鮪魚罐頭食品 12 2.3 一般鮪魚罐頭的製法 14 2.4 副產物之使用 16 第三節蛋白質水解作用 17 3.1 蛋白質水解作用方式 17 3.2 化學法 18 3.3 酵素法 19 第四節 膜處理技術 21 4.1 膜系統 21 4.2 膜材料 22 4.2.1 醋酸纖維 23 4.2.2 polysulfone 23 4.3 膜組之型式 24 4.3.1 管型 24 4.3.2 平版框架型 25 4.3.3 螺旋捲筒型 25 4.3.4 中空纖維型 25 4.4 膜分離加工之種類 26 4.5 膜處理技術於食品加工上之應用 27 4.5.1 乳品工業 27 4.5.2 果汁 28 4.5.3 葡萄酒 28 4.6膜分離技術生產水產調味液的基本概念及流程 29 第五節 脂質氧化 32 5.1 脂質氧化與食品品質 32 5.2 脂質氧化反應 33 5.3 脂質氧化對生理健康之影響 33 5.4 防止食品氧化的方法與途徑 34 5.5 何謂抗氧化物 35 5.6 抗氧化的作用機制 36 5.7 天然抗氧化劑 38 第三章 鮪魚蒸煮液蛋白水解液之調味品試製 第一節 中文摘要 40 第二節 英文摘要 42 第三節 前言 44 第四節 材料與方法 47 4.1 實驗流程 47 4.2 鮪魚蒸煮液之製備 47 4.3 酵素之選擇 47 4.4 實驗方法 49 4.4.1. 化學組成分析 49 4.4.2 pH 對鮪魚蒸煮液水溶性蛋白質溶解度的影響 51 4.4.3 酵素特性分析 51 4.4.4 酵素水解鮪魚蒸煮液之水解度 52 4.4.5 蛋白質水解殘留活性之測定 52 4.4.6 鮪魚蒸煮液蛋白水解物之分離與濃縮 52 4.4.7 膜過濾系統 53 4.4.8 鮪魚蒸煮液蛋白水解物之分子量分佈 53 4.4.9 游離胺基酸 56 4.4.10 官能品評 56 第五節 結果與討論 58 5.1 鮪魚蒸煮液之一般化學成分組成 58 5.2 酵素動力學 58 5.3 以鮪魚蒸煮液為基質之酵素動力學 63 5.3.1 蛋白質水解酵素的濃度對水解效果之影響 67 5.3.2 鮪魚蒸煮液與蛋白質水解酵素之比例對水解效果之影響 67 5.3.3 鮪魚蒸煮液蛋白質水解時之 Km 與 Vmax 72 5.4 鮪魚蒸煮液蛋白質水解度之探討 77 5.5 經超過濾系統處理後之一般成分組成與蛋白質含量變化 83 5.6 鮪魚蒸煮液蛋白質水解液中分子量的分佈 86 5.7 鮪魚蒸煮液蛋白質水解液中的游離胺基酸的變化 90 5.8 水解液、滯留液及透過液中殘留蛋白之活性 99 5.9 官能品評 99 第六節 結論 104 第四章 鮪魚蒸煮液蛋白水解液之抗氧化活性物質鑑定 第一節 中文摘要 105 第二節 英文摘要 106 第三節 前言 107 第四節 材料與方法 110 4.1 鮪魚蒸煮液之製備 110 4.2 酵素之選擇 110 4.3 實驗方法 110 4.3.1 實驗流程 110 4.3.2 酵素水解物之製備 112 4.3.3 水解率之測定 112 4.3.4 水解物之分劃 112 4.3.5 還原力之測定 113 4.3.6 抗氧化活性之測定 113 4.3.7 清除 DPPH 自由基能力之測定 114 4.3.8 游離胺基酸與總胺基酸之分析 114 4.3.9 具抗氧化活性胜之分離與純化 115 第五節 結果與討論 117 5.1 水解率與抗氧化特性 117 5.1.1 鮪魚蒸煮液蛋白質水解物之水解率 117 5.1.2 鮪魚蒸煮液蛋白質水解物之還原力 117 5.1.3 鮪魚蒸煮液蛋白質水解物之抗氧化活性 120 5.1.4 鮪魚蒸煮液蛋白質水解物清除 DPPH 自由基的能力 120 5.2 具抗氧化特性之鮪魚蒸煮液蛋白質水解物其分子量分佈 123 5.3 AO 蛋白質水解物各區分物之還原力 125 5.4 AO 蛋白質水解物各區分物之抗氧化活性 128 5.5 AO 蛋白質水解物各區分物之清除 DPPH 自由基能力 128 5.6 蛋白質水解物中具抗氧化功能的胜類物質之分離興純化 132 5.7 具抗氧化功能的胜類物質的胺基酸序列分析 135 第六節 結論 141 第五章 結語 142 第六章 參考文獻 145 第七章 圖表索引 16

    The Singapore national precision medicine strategy

    No full text
    Precision medicine promises to transform healthcare for groups and individuals through early disease detection, refining diagnoses and tailoring treatments. Analysis of large-scale genomic-phenotypic databases is a critical enabler of precision medicine. Although Asia is home to 60% of the world's population, many Asian ancestries are under-represented in existing databases, leading to missed opportunities for new discoveries, particularly for diseases most relevant for these populations. The Singapore National Precision Medicine initiative is a whole-of-government 10-year initiative aiming to generate precision medicine data of up to one million individuals, integrating genomic, lifestyle, health, social and environmental data. Beyond technologies, routine adoption of precision medicine in clinical practice requires social, ethical, legal and regulatory barriers to be addressed. Identifying driver use cases in which precision medicine results in standardized changes to clinical workflows or improvements in population health, coupled with health economic analysis to demonstrate value-based healthcare, is a vital prerequisite for responsible health system adoption.Agency for Science, Technology and Research (A*STAR)Ministry of Health (MOH)National Medical Research Council (NMRC)National Research Foundation (NRF)We thank all investigators, staf members and study participants of the contributing cohorts and studies: (1) the HELIOS study at the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; (2) the GUSTO study jointly hosted by the National University Hospital, KK Women’s and Children’s Hospital, the National University of Singapore and the Singapore Institute for Clinical Sciences, the Agency for Science Technology and Research (A*STAR); (3) the SEED cohort at the Singapore Eye Research Institute; (4) the MEC, National University of Singapore; (5) the PRISM cohort; and (6) the TTSH Personalised Medicine Normal Controls cohort. We also thank the National Supercomputing Centre, Singapore (https://www.ncss.sg) for computation resources. The SG10K_Health project is funded by the Industry Alignment Fund (Pre-Positioning) (IAF-PP, H17/01/a0/007); the project made use of participating study cohorts supported by the following funding sources: (1) the HELIOS study by grants from a Strategic Initiative at Lee Kong Chian School of Medicine, the Singapore MOH under its Singapore Translational Research Investigator Award (NMRC/STaR/0028/2017) and the IAF-PP (H18/01/a0/016); (2) the GUSTO study by the Singapore National Research Foundation under its Translational and Clinical Research Flagship Program and administered by the Singapore MOH’s National Medical Research Council Singapore (NMRC/TCR/004-NUS/2008, NMRC/ TCR/012-NUHS/2014) with additional funding support available through the A*STAR and the IAF-PP (H17/01/a0/005); (3) the SEED study by NMRC/CIRG/1417/2015, NMRC/CIRG/1488/2018 and NMRC/OFLCG/004/2018; (4) the MEC by individual research and clinical scientist award schemes from the Singapore National Medical Research Council (including MOH-000271-00) and the Singapore Biomedical Research Council, the Singapore MOH, the National University of Singapore and the Singapore National University Health System; (5) the PRISM cohort study by NMRC/CG/ M006/2017_NHCS, NMRC/STaR/0011/2012, NMRC/STaR/0026/2015, the Lee Foundation and the Tanoto Foundation; and (6) the TTSH cohort study by NMRC/CG12AUG2017 and CGAug16M012. This research is also supported by the National Research Foundation Singapore under its NPM program Phase II funding (MOH-000588) and administered by the Singapore MOH’s National Medical Research Council
    corecore