244 research outputs found

    COOPERATIVE MARKETING IN SPECIALTY GRAINS AND IDENTITY PRESERVED GRAIN MARKETS

    Get PDF
    Marketing of specialty and identity preserved grains has become an important strategy in the grain marketing industry and is being driven, in part, by consumer and processor demand and an interest in non-GM products. This study provides background and practices of numerous organizations involved in marketing of specialty/identity preserved grains. Supporting marketing activities are reviewed. Key factors in the success (or failure) of their efforts are identified. Major challenges facing the participants in the specialty/IP grain marketing industry are discussed. The primary focus is on the role of agricultural cooperatives and producer owned alliances.identity preservation, IP, segregation, traceability, specialty products, genetically modified, GM, non-GM, cooperative, alliance., Agribusiness,

    ISSUES IN DEVELOPMENT AND ADOPTION OF GENETICALLY MODIFIED (GM) WHEATS

    Get PDF
    Development of genetically modified (GM) wheat varieties is proceeding; however, several critical issues remain the focus of contention. This project summarizes the current state of knowledge on some of these critical issues for commercialization of GM wheats. Background on the evolution of GM Wheats is presented. Then, agronomic adoption and competitiveness of GM crops; research on GM traits in wheat; consumer acceptance of GM crops (a separate section is included on issues related to consumer acceptance of GM crops); regulatory issues and status; international trade; testing, segregation, and identity preservation; and production and marketing risks are examined. Finally, there is a description of the likely marketing system to evolve and a discussion of outstanding issues.wheat, genetic modification, transgenic, marketing, Crop Production/Industries, Research and Development/Tech Change/Emerging Technologies,

    Development of a High-Throughput Assay for Identifying Inhibitors of TBK1 and IKKΔ

    Get PDF
    IKKΔ and TBK1 are noncanonical IKK family members which regulate inflammatory signaling pathways and also play important roles in oncogenesis. However, few inhibitors of these kinases have been identified. While the substrate specificity of IKKΔ has recently been described, the substrate specificity of TBK1 is unknown, hindering the development of high-throughput screening technologies for inhibitor identification. Here, we describe the optimal substrate phosphorylation motif for TBK1, and show that it is identical to the phosphorylation motif previously described for IKKΔ. This information enabled the design of an optimal TBK1/IKKΔ substrate peptide amenable to high-throughput screening and we assayed a 6,006 compound library that included 4,727 kinase-focused compounds to discover in vitro inhibitors of TBK1 and IKKΔ. 227 compounds in this library inhibited TBK1 at a concentration of 10 ”M, while 57 compounds inhibited IKKΔ. Together, these data describe a new high-throughput screening assay which will facilitate the discovery of small molecule TBK1/IKKΔ inhibitors possessing therapeutic potential for both inflammatory diseases and cancer

    High-Throughput Screening for RecA Inhibitors Using a Transcreener Adenosine 5â€Č- O -Diphosphate Assay

    Get PDF
    The activities of the bacterial RecA protein are involved in the de novo development and transmission of antibiotic resistance genes, thus allowing bacteria to overcome the metabolic stress induced by antibacterial agents. RecA is ubiquitous and highly conserved among bacteria, but has only distant homologs in human cells. Together, this evidence points to RecA as a novel and attractive antibacterial drug target. All known RecA functions require the formation of a complex formed by multiple adenosine 5â€Č-O-triphosphate (ATP)-bound RecA monomers on single-stranded DNA. In this complex, RecA hydrolyzes ATP. Although several methods for assessing RecA's ATPase activity have been reported, these assay conditions included relatively high concentrations of enzyme and ATP and thereby restricted the RecA conformational state. Herein, we describe the validation of commercial reagents (TranscreenerÂź adenosine 5â€Č-O-diphosphate [ADP]2 fluorescence polarization assay) for the high-throughput measurement of RecA's ATPase activity with lower concentrations of ATP and RecA. Under optimized conditions, ADP detection by the Transcreener reagent provided robust and reproducible activity data (Zâ€Č=0.92). Using the Transcreener assay, we screened 113,477 small molecules against purified RecA protein. In total, 177 small molecules were identified as confirmed hits, of which 79 were characterized by IC50 values ≀10 ÎŒM and 35 were active in bioassays with live bacteria. This set of compounds comprises previously unidentified scaffolds for RecA inhibition and represents tractable hit structures for efforts aimed at tuning RecA inhibitory activity in both biochemical and bacteriological assays

    Subunit interactions within box C/D sRNPs

    Get PDF
    xi, 98 leaves : ill. (some col.) ; 29 cmBox C/D small ribonucleoproteins (box C/D sRNPs) are responsible for the 2’-O-methylation required for the complete maturation of precursor rRNA. Archaeal box C/D sRNPs, like eucarya, are composed of four components: a guide RNA (box C/D sRNA), an RNA binding protein (L7ae), a 2’-O-methyltransferase (Fibrillarin) and a structural protein (Nop5). Here we develop several approaches for studying box C/D sRNP assembly. In particular, we have used pulldown and mobility shift assays to identify box C/D sRNP assembly intermediates (Nop5-aFib and L7ae-sR1). We have also demonstrated that isothermal titration calorimetry (ITC) can be utilized to quantitatively characterize the energetics of formation for the L7ae-sRNA assembly intermediate

    Medulloblastoma has a global impact on health related quality of life: Findings from an international cohort.

    Get PDF
    BackgroundUnderstanding the global impact of medulloblastoma on health related quality of life (HRQL) is critical to characterizing the broad impact of this disease and realizing the benefits of modern treatments. We evaluated HRQL in an international cohort of pediatric medulloblastoma patients.MethodsSeventy-six patients were selected from 10 sites across North America, Europe, and Asia, who participated in the Medulloblastoma Advanced Genomics International Consortium (MAGIC). The Health Utilities Index (HUI) was administered to patients and/or parents at each site. Responses were used to determine overall HRQL and attributes (ie specific subdomains). The impact of various demographic and medical variables on HRQL was considered-including molecular subgroup.ResultsThe majority of patients reported having moderate or severe overall burden of morbidity for both the HUI2 and HUI3 (HUI2 = 60%; HUI3 = 72.1%) when proxy-assessed. Self-care in the HUI2 was rated as higher (ie better outcome) for patients from Western versus Eastern sites, P = .02. Patients with nonmetastatic status had higher values (ie better outcomes) for the HUI3 hearing, HUI3 pain, and HUI2 pain, all P < .05. Patients treated with a gross total resection also had better outcomes for the HUI3 hearing (P = .04). However, those who underwent a gross total resection reported having worse outcomes on the HUI3 vision (P = .02). No differences in HRQL were evident as a function of subgroup.ConclusionsBy examining an international sample of survivors, we characterized the worldwide impact of medulloblastoma. This is a critical first step in developing global standards for evaluating long-term outcomes

    The Lipid Kinase PIP5K1C Regulates Pain Signaling and Sensitization

    Get PDF
    SummaryNumerous pain-producing (pronociceptive) receptors signal via phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. However, it is currently unknown which lipid kinases generate PIP2 in nociceptive dorsal root ganglia (DRG) neurons and if these kinases regulate pronociceptive receptor signaling. Here, we found that phosphatidylinositol 4-phosphate 5 kinase type 1C (PIP5K1C) is expressed at higher levels than any other PIP5K and, based on experiments with Pip5k1c+/− mice, generates at least half of all PIP2 in DRG neurons. Additionally, Pip5k1c haploinsufficiency reduces pronociceptive receptor signaling and TRPV1 sensitization in DRG neurons as well as thermal and mechanical hypersensitivity in mouse models of chronic pain. We identified a small molecule inhibitor of PIP5K1C (UNC3230) in a high-throughput screen. UNC3230 lowered PIP2 levels in DRG neurons and attenuated hypersensitivity when administered intrathecally or into the hindpaw. Our studies reveal that PIP5K1C regulates PIP2-dependent nociceptive signaling and suggest that PIP5K1C is a therapeutic target for chronic pain

    High-throughput small molecule screen identifies inhibitors of aberrant chromatin accessibility

    Get PDF
    Transcriptional regulators lacking enzymatic activity or binding pockets with targetable molecular features have typically been considered “undruggable,” and a reductionist approach based on identification of their molecular targets has largely failed. We have demonstrated that the Ewing sarcoma chimeric transcription factor, EWSR1-FLI1, maintains accessible chromatin at disease-specific regions. We adapted formaldehyde-assisted isolation of regulatory elements (FAIRE), an assay for accessible chromatin, to screen an epigenetically targeted small molecule library for compounds that reverse the disease-associated signature. This approach can be applied broadly for discovery of chromatin-based developmental therapeutics and offers significant advantages because it does not require the selection of a single molecular target. Using this approach, we identified a specific class of compounds with therapeutic potential

    Discovery of an in Vivo Chemical Probe of the Lysine Methyltransferases G9a and GLP

    Get PDF
    Among epigenetic “writers”, “readers”, and “erasers”, the lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9me2) and non-histone proteins, have been implicated in a variety of human diseases. A “toolkit” of well-characterized chemical probes will allow biological and disease hypotheses concerning these proteins to be tested in cell-based and animal models with high confidence. We previously discovered potent and selective G9a/GLP inhibitors including the cellular chemical probe UNC0638, which displays an excellent separation of functional potency and cell toxicity. However, this inhibitor is not suitable for animal studies due to its poor pharmacokinetic (PK) properties. Here, we report the discovery of the first G9a and GLP in vivo chemical probe UNC0642, which not only maintains high in vitro and cellular potency, low cell toxicity, and excellent selectivity, but also displays improved in vivo PK properties, making it suitable for animal studies

    Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing

    Get PDF
    Drug repurposing approaches have the potential advantage of facilitating rapid and cost-effective development of new therapies. Particularly, the repurposing of drugs with known safety profiles in children could bypass or streamline toxicity studies. We employed a phenotypic screening paradigm on a panel of well-characterized cell lines derived from pediatric solid tumors against a collection of ∌3,800 compounds spanning approved drugs and investigational agents. Specifically, we employed titration-based screening where compounds were tested at multiple concentrations for their effect on cell viability. Molecular and cellular target enrichment analysis indicated that numerous agents across different therapeutic categories and modes of action had an antiproliferative effect, notably antiparasitic/protozoal drugs with non-classic antineoplastic activity. Focusing on active compounds with dosing and safety information in children according to the Children's Pharmacy Collaborative database, we identified compounds with therapeutic potential through further validation using 3D tumor spheroid models. Moreover, we show that antiparasitic agents induce cell death via apoptosis induction. This study demonstrates that our screening platform enables the identification of chemical agents with cytotoxic activity in pediatric cancer cell lines of which many have known safety/toxicity profiles in children. These agents constitute attractive candidates for efficacy studies in pre-clinical models of pediatric solid tumors
    • 

    corecore