1,192 research outputs found

    Initial stage of the 2D-3D transition of a strained SiGe layer on a pit-patterned Si(001) template

    Full text link
    We investigate the initial stage of the 2D-3D transition of strained Ge layers deposited on pit-patterned Si(001) templates. Within the pits, which assume the shape of inverted, truncated pyramids after optimized growth of a Si buffer layer, the Ge wetting layer develops a complex morphology consisting exclusively of {105} and (001) facets. These results are attributed to a strain-driven step-meandering instability on the facetted side-walls of the pits, and a step-bunching instability at the sharp concave intersections of these facets. Although both instabilities are strain-driven, their coexistence becomes mainly possible by the geometrical restrictions in the pits. It is shown that the morphological transformation of the pit surface into low-energy facets has strong influence on the preferential nucleation of Ge islands at the flat bottom of the pits.Comment: 19 pages, 7 figure

    Giant g factor tuning of long-lived electron spins in Ge

    Get PDF
    Control of electron spin coherence via external fields is fundamental in spintronics. Its implementation demands a host material that accommodates the highly desirable but contrasting requirements of spin robustness to relaxation mechanisms and sizeable coupling between spin and orbital motion of charge carriers. Here we focus on Ge, which, by matching those criteria, is rapidly emerging as a prominent candidate for shuttling spin quantum bits in the mature framework of Si electronics. So far, however, the intrinsic spin-dependent phenomena of free electrons in conventional Ge/Si heterojunctions have proved to be elusive because of epitaxy constraints and an unfavourable band alignment. We overcome such fundamental limitations by investigating a two dimensional electron gas (2DEG) confined in quantum wells of pure Ge grown on SiGe-buffered Si substrates. These epitaxial systems demonstrate exceptionally long spin relaxation and coherence times, eventually unveiling the potential of Ge in bridging the gap between spintronic concepts and semiconductor device physics. In particular, by tuning spin-orbit interaction via quantum confinement we demonstrate that the electron Land\'e g factor and its anisotropy can be engineered in our scalable and CMOS-compatible architectures over a range previously inaccessible for Si spintronics

    Screening Breakdown on the Route toward the Metal-Insulator Transition in Modulation Doped Si/SiGe Quantum Wells

    Full text link
    Exploiting the spin resonance of two-dimensional (2D) electrons in SiGe/Si quantum wells we determine the carrier-density-dependence of the magnetic susceptibility. Assuming weak interaction we evaluate the density of states at the Fermi level D(E_F), and the screening wave vector, q_TF. Both are constant at higher carrier densities n, as for an ideal 2D carrier gas. For n < 3e11 cm-2, they decrease and extrapolate to zero at n = 7e10 cm-2. Calculating the mobility from q_TF yields good agreement with experimental values justifying the approach. The decrease in D(E_F) is explained by potential fluctuations which lead to tail states that make screening less efficient and - in a positive feedback - cause an increase of the potential fluctuations. Even in our high mobility samples the fluctuations exceed the electron-electron interaction leading to the formation of puddles of mobile carriers with at least 1 micrometer diameter.Comment: 4 pages, 3 figure

    Intelligent Management of Mobile Systems through Computational Self-Awareness

    Full text link
    Runtime resource management for many-core systems is increasingly complex. The complexity can be due to diverse workload characteristics with conflicting demands, or limited shared resources such as memory bandwidth and power. Resource management strategies for many-core systems must distribute shared resource(s) appropriately across workloads, while coordinating the high-level system goals at runtime in a scalable and robust manner. To address the complexity of dynamic resource management in many-core systems, state-of-the-art techniques that use heuristics have been proposed. These methods lack the formalism in providing robustness against unexpected runtime behavior. One of the common solutions for this problem is to deploy classical control approaches with bounds and formal guarantees. Traditional control theoretic methods lack the ability to adapt to (1) changing goals at runtime (i.e., self-adaptivity), and (2) changing dynamics of the modeled system (i.e., self-optimization). In this chapter, we explore adaptive resource management techniques that provide self-optimization and self-adaptivity by employing principles of computational self-awareness, specifically reflection. By supporting these self-awareness properties, the system can reason about the actions it takes by considering the significance of competing objectives, user requirements, and operating conditions while executing unpredictable workloads

    Lattice dynamics reveals a local symmetry breaking in the emergent dipole phase of PbTe

    Full text link
    Local symmetry breaking in complex materials is emerging as an important contributor to materials properties but is inherently difficult to study. Here we follow up an earlier structural observation of such a local symmetry broken phase in the technologically important compound PbTe with a study of the lattice dynamics using inelastic neutron scattering (INS). We show that the lattice dynamics are responsive to the local symmetry broken phase, giving key insights in the behavior of PbTe, but also revealing INS as a powerful tool for studying local structure. The new result is the observation of the unexpected appearance on warming of a new zone center phonon branch in PbTe. In a harmonic solid the number of phonon branches is strictly determined by the contents and symmetry of the unit cell. The appearance of the new mode indicates a crossover to a dynamic lower symmetry structure with increasing temperature. No structural transition is seen crystallographically but the appearance of the new mode in inelastic neutron scattering coincides with the observation of local Pb off-centering dipoles observed in the local structure. The observation resembles relaxor ferroelectricity but since there are no inhomogeneous dopants in pure PbTe this anomalous behavior is an intrinsic response of the system. We call such an appearance of dipoles out of a non-dipolar ground-state "emphanisis" meaning the appearance out of nothing. It cannot be explained within the framework of conventional phase transition theories such as soft-mode theory and challenges our basic understanding of the physics of materials

    g-Factor Tuning and Manipulation of Spins by an Electric Current

    Full text link
    We investigate the Zeeman splitting of two-dimensional electrons in an asymmetric silicon quantum well, by electron-spin-resonance (ESR) experiments. Applying a small dc current we observe a shift in the resonance field due to the additional current-induced Bychkov-Rashba (BR) type of spin-orbit (SO) field. This finding demonstrates SO coupling in the most straightforward way: in the presence of a transverse electric field the drift velocity of the carriers imposes an effective SO magnetic field. This effect allows selective tuning of the g-factor by an applied dc current. In addition, we show that an ac current may be used to induce spin resonance very efficiently.Comment: 4 pages, 4 figure
    • …
    corecore