1,148 research outputs found

    Macrophages in homeostatic immune function

    Get PDF
    Macrophages are not only involved in inflammatory and anti-infective processes, but also play an important role in maintaining tissue homeostasis. In this review, we summarize recent evidence investigating the role of macrophages in controlling angiogenesis, metabolism as well as salt and water balance. Particularly, we summarize the importance of macrophage tonicity enhancer binding protein (TonEBP, also termed nuclear factor of activated T-cells 5 [NFAT5]) expression in the regulation of salt and water homeostasis. Further understanding of homeostatic macrophage function may lead to new therapeutic approaches to treat ischemia, hypertension and metabolic disorders

    Spin-Valley Kondo Effect in Multi-electron Silicon Quantum Dots

    Full text link
    We study the spin-valley Kondo effect of a silicon quantum dot occupied by N% \mathcal{N} electrons, with N\mathcal{N} up to four. We show that the Kondo resonance appears in the N=1,2,3\mathcal{N}=1,2,3 Coulomb blockade regimes, but not in the N=4\mathcal{N}=4 one, in contrast to the spin-1/2 Kondo effect, which only occurs at N=\mathcal{N}= odd. Assuming large orbital level spacings, the energy states of the dot can be simply characterized by fourfold spin-valley degrees of freedom. The density of states (DOS) is obtained as a function of temperature and applied magnetic field using a finite-U equation-of-motion approach. The structure in the DOS can be detected in transport experiments. The Kondo resonance is split by the Zeeman splitting and valley splitting for double- and triple-electron Si dots, in a similar fashion to single-electron ones. The peak structure and splitting patterns are much richer for the spin-valley Kondo effect than for the pure spin Kondo effect.Comment: 8 pages, 4 figures, in PRB format. This paper is a sequel to the paper published in Phys. Rev. B 75, 195345 (2007

    Screening Breakdown on the Route toward the Metal-Insulator Transition in Modulation Doped Si/SiGe Quantum Wells

    Full text link
    Exploiting the spin resonance of two-dimensional (2D) electrons in SiGe/Si quantum wells we determine the carrier-density-dependence of the magnetic susceptibility. Assuming weak interaction we evaluate the density of states at the Fermi level D(E_F), and the screening wave vector, q_TF. Both are constant at higher carrier densities n, as for an ideal 2D carrier gas. For n < 3e11 cm-2, they decrease and extrapolate to zero at n = 7e10 cm-2. Calculating the mobility from q_TF yields good agreement with experimental values justifying the approach. The decrease in D(E_F) is explained by potential fluctuations which lead to tail states that make screening less efficient and - in a positive feedback - cause an increase of the potential fluctuations. Even in our high mobility samples the fluctuations exceed the electron-electron interaction leading to the formation of puddles of mobile carriers with at least 1 micrometer diameter.Comment: 4 pages, 3 figure

    ZHP-3 Acts at Crossovers to Couple Meiotic Recombination with Synaptonemal Complex Disassembly and Bivalent Formation in C. elegans

    Get PDF
    Crossover recombination and the formation of chiasmata normally ensure the proper segregation of homologous chromosomes during the first meiotic division. zhp-3, the Caenorhabditis elegans ortholog of the budding yeast ZIP3 gene, is required for crossover recombination. We show that ZHP-3 protein localization is highly dynamic. At a key transition point in meiotic prophase, the protein shifts from along the length of the synaptonemal complex (SC) to an asymmetric localization on the SC and eventually becomes restricted to foci that mark crossover recombination events. A zhp-3::gfp transgene partially complements a null mutation and reveals a separation of function; although the fusion protein can promote nearly wild-type levels of recombination, aneuploidy among the progeny is high, indicating defects in meiotic chromosome segregation. The structure of bivalents is perturbed in this mutant, suggesting that the chromosome segregation defect results from an inability to properly remodel chromosomes in response to crossovers. smo-1 mutants exhibit phenotypes similar to zhp-3::gfp mutants at higher temperatures, and smo-1; zhp-3::gfp double mutants exhibit more severe meiotic defects than either single mutant, consistent with a role for SUMO in the process of SC disassembly and bivalent differentiation. We propose that coordination of crossover recombination with SC disassembly and bivalent formation reflects a conserved role of Zip3/ZHP-3 in coupling recombination with SC morphogenesis

    Orbital mechanisms of electron spin manipulation by an electric field

    Full text link
    A theory of spin manipulation of quasi-two-dimensional (2D) electrons by a time-dependent gate voltage applied to a quantum well is developed. The Dresselhaus and Rashba spin-orbit coupling mechanisms are shown to be rather efficient for this purpose. The spin response to a perpendicular-to-plane electric field is due to a deviation from the strict 2D limit and is controlled by the ratios of the spin, cyclotron and confinement frequencies. The dependence of this response on the magnetic field direction is indicative of the strenghts of the competing spin-orbit coupling mechanisms

    Elementary immunology: Na(+) as a regulator of immunity

    Get PDF
    The skin can serve as an interstitial Na(+) reservoir. Local tissue Na(+) accumulation increases with age, inflammation and infection. This increased local Na(+) availability favors pro-inflammatory immune cell function and dampens their anti-inflammatory capacity. In this review, we summarize available data on how NaCl affects various immune cells. We particularly focus on how salt promotes pro-inflammatory macrophage and T cell function and simultaneously curtails their regulatory and anti-inflammatory potential. Overall, these findings demonstrate that local Na(+) availability is a promising novel regulator of immunity. Hence, the modulation of tissue Na(+) levels bears broad therapeutic potential: increasing local Na(+) availability may help in treating infections, while lowering tissue Na(+) levels may be used to treat, for example, autoimmune and cardiovascular diseases

    Lattice dynamics reveals a local symmetry breaking in the emergent dipole phase of PbTe

    Full text link
    Local symmetry breaking in complex materials is emerging as an important contributor to materials properties but is inherently difficult to study. Here we follow up an earlier structural observation of such a local symmetry broken phase in the technologically important compound PbTe with a study of the lattice dynamics using inelastic neutron scattering (INS). We show that the lattice dynamics are responsive to the local symmetry broken phase, giving key insights in the behavior of PbTe, but also revealing INS as a powerful tool for studying local structure. The new result is the observation of the unexpected appearance on warming of a new zone center phonon branch in PbTe. In a harmonic solid the number of phonon branches is strictly determined by the contents and symmetry of the unit cell. The appearance of the new mode indicates a crossover to a dynamic lower symmetry structure with increasing temperature. No structural transition is seen crystallographically but the appearance of the new mode in inelastic neutron scattering coincides with the observation of local Pb off-centering dipoles observed in the local structure. The observation resembles relaxor ferroelectricity but since there are no inhomogeneous dopants in pure PbTe this anomalous behavior is an intrinsic response of the system. We call such an appearance of dipoles out of a non-dipolar ground-state "emphanisis" meaning the appearance out of nothing. It cannot be explained within the framework of conventional phase transition theories such as soft-mode theory and challenges our basic understanding of the physics of materials

    Sodium and its manifold impact on our immune system

    Get PDF
    The Western diet is rich in salt, and a high salt diet (HSD) is suspected to be a risk factor for cardiovascular diseases. It is now widely accepted that an experimental HSD can stimulate components of the immune system, potentially exacerbating certain autoimmune diseases, or alternatively, improving defenses against certain infections, such as cutaneous leishmaniasis. However, recent findings show that an experimental HSD may also aggravate other infections (e.g., pyelonephritis or systemic listeriosis). Here, we discuss the modulatory effects of a HSD on the microbiota, metabolic signaling, hormonal responses, local sodium concentrations, and their effects on various immune cell types in different tissues. We describe how these factors are integrated, resulting either in immune stimulation or suppression in various tissues and disease settings

    Experimental probing of exchange interactions between localized spins in the dilute magnetic insulator (Ga,Mn)N

    Full text link
    The sign, magnitude, and range of the exchange couplings between pairs of Mn ions is determined for (Ga,Mn)N and (Ga,Mn)N:Si with x < 3%. The samples have been grown by metalorganic vapor phase epitaxy and characterized by secondary-ion mass spectroscopy; high-resolution transmission electron microscopy with capabilities allowing for chemical analysis, including the annular dark-field mode and electron energy loss spectroscopy; high-resolution and synchrotron x-ray diffraction; synchrotron extended x-ray absorption fine-structure; synchrotron x-ray absorption near-edge structure; infra-red optics and electron spin resonance. The results of high resolution magnetic measurements and their quantitative interpretation have allowed to verify a series of ab initio predictions on the possibility of ferromagnetism in dilute magnetic insulators and to demonstrate that the interaction changes from ferromagnetic to antiferromagnetic when the charge state of the Mn ions is reduced from 3+ to 2+.Comment: 12 pages, 14 figures; This version contains the detailed characterization of the crystal structure as well as of the Mn distribution and charge stat
    • 

    corecore