43 research outputs found
CD8+ cell somatic mutations in multiple sclerosis patients and controls-Enrichment of mutations in STAT3 and other genes implicated in hematological malignancies
Funding Information: This study has been financially supported by research grants from the Helsinki University Hospital, University of Helsinki, the Multiple Sclerosis Foundation of Finland, the Finnish Cultural Foundation, Biogen Finland, Sanofi- Genzyme, Roche and Novartis. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Publisher Copyright: © 2021 Valori et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Somatic mutations have a central role in cancer but their role in other diseases such as common autoimmune disorders is not clear. Previously we and others have demonstrated that especially CD8+ T cells in blood can harbor persistent somatic mutations in some patients with multiple sclerosis (MS) and rheumatoid arthritis. Here we concentrated on CD8+ cells in more detail and tested (i) how commonly somatic mutations are detectable, (ii) does the overall mutation load differ between MS patients and controls, and (iii) do the somatic mutations accumulate non-randomly in certain genes? We separated peripheral blood CD8+ cells from newly diagnosed relapsing MS patients (n = 21) as well as matched controls (n = 21) and performed next-generation sequencing of the CD8+ cells' DNA, limiting our search to a custom panel of 2524 immunity and cancer related genes, which enabled us to obtain a median sequencing depth of over 2000x. We discovered nonsynonymous somatic mutations in all MS patients' and controls' CD8+ cell DNA samples, with no significant difference in number between the groups (p = 0.60), at a median allelic fraction of 0.5% (range 0.2- 8.6%). The mutations showed statistically significant clustering especially to the STAT3 gene, and also enrichment to the SMARCA2, DNMT3A, SOCS1 and PPP3CA genes. Known activating STAT3 mutations were found both in MS patients and controls and overall 1/5 of the mutations were previously described cancer mutations. The detected clustering suggests a selection advantage of the mutated CD8+ clones and calls for further research on possible phenotypic effects.Peer reviewe
ALS in Finland Major Genetic Variants and Clinical Characteristics of Patients With and Without the C9o7f72 Hexanucleotide Repeat Expansion
Background and Objectives To analyze the frequencies of major genetic variants and the clinical features in Finnish patients with amyotrophic lateral sclerosis (ALS) with or without the C9orf72 hexanucleotide repeat expansion. Methods A cohort of patients with motor neuron disease was recruited between 1993 and 2020 at the Helsinki University Hospital and 2 second-degree outpatient clinics in Helsinki. Finnish ancestry patients with ALS fulfilled the diagnosis according to the revised El Escorial criteria and the Awaji-criteria. Two categories of familial ALS (FALS) were used. A patient was defined FALS-A if at least 1 first- or second-degree family member had ALS, and FALS-NP, if family members had additional neurologic or psychiatric endophenotypes. Results Of the 815 patients, 25% had FALS-A and 45% FALS-NP. C9orf72 expansion (C9pos) was found in 256 (31%) of all patients, in 58% of FALS-A category, in 48% of FALS-NP category, and in 23 or 17% of sporadic cases using the FALS-A or FALS-NP definition. C9pos or SOD1 p.D91A homozygosity was found in 328 (40%) of the 815 patients. We compared demographic and clinical characteristics between C9pos and patients with unknown cause of ALS (Unk). We found that the age at onset was significantly earlier and survival markedly shorter in the C9pos vs Unk patients with ALS. The shortest survival was found in bulbar-onset male C9pos patients, whereas the longest survival was found in Unk limb-onset males. Older age at onset associated consistently with shorter survival in C9pos and Unk patients in both limb-onset and bulbaronset groups. There were no significant differences in the frequencies of bulbar-onset and limbonset patients in C9pos and Unk groups. ALS-frontotemporal dementia (FTD) was more common in C9pos (17%) than in Unk (4%) patients, and of all patients with ALS-FTD, 70% were C9pos. Discussion These results provide further evidence for the short survival of C9orf72-associated ALS. A prominent role of the C9orf72 and SOD1 variants was found in the Finnish population. An unusually high frequency of C9pos was also found among patients with sporadic ALS. The enrichment of these 2 variants likely contributes to the high incidence of ALS in Finland.Peer reviewe
A novel class of somatic mutations in blood detected preferentially in CD8+cells
Somatic mutations have a central role in cancer but their role in other diseases such as autoimmune disorders is poorly understood. Earlier work has provided indirect evidence of rare somatic mutations in autoreactive T-lymphocytes in multiple sclerosis (MS) patients but such mutations have not been identified thus far. We analysed somatic mutations in blood in 16 patients with relapsing MS and 4 with other neurological autoimmune disease. To facilitate the detection of somatic mutations CD4 +, CD8 +, CD19 + and CD4-/CD8-/CD19- cell subpopulations were separated. We performed next-generation DNA sequencing targeting 986 immune related genes. Somatic mutations were called by comparing the sequence data of each cell subpopulation to other subpopulations of the same patient and validated by amplicon sequencing. We found non-synonymous somatic mutations in 12 (60%) patients (10 MS, 1 myasthenia gravis, 1 narcolepsy). There were 27 mutations, all different and mostly novel (67%). They were discovered at subpopulation-wise allelic fractions of 0.2%-4.6% (median 0.95%). Multiple mutations were found in 8 patients. The mutations were enriched in CD8 + cells (85% of mutations). In follow-up after a median time of 2.3 years, 96% of the mutations were still detectable. These results unravel a novel class of persistent somatic mutations, many of which were in genes that may play a role in autoimmunity (ATM, BTK, CD46, CD180, CLIP2, HMMR, IKEF3, ITGB3, KIR3DL2, MAPK10, CD56/NCAM1, RBM6, RORA, RPM and STAT3). Whether some of this class of mutations plays a role in disease is currently unclear, but these results define an interesting hitherto unknown research target for future studies. (C) 2016 The Authors. Published by Elsevier Inc.Peer reviewe
Heterozygous TYROBP deletion (PLOSLFIN) is not a strong risk factor for cognitive impairment
Biallelic loss-of-function mutations in TYROBP and TREM2 cause a rare disease that resembles early-onset frontotemporal dementia with bone lesions called polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL). Some PLOSL-causing variants in TREM2 have also been associated with Alzheimer's disease when heterozygous. Here, we studied the PLOSLFIN TYROBP deletion that covers 4 of the gene's 5 exons. We genotyped 3220 older Finns (mean age 79, range 58-104) and found 11 deletion carriers (mean age 78, range 60-94). The carrier prevalence was 0.0034 (1 in 293) that matches previous findings in younger cohorts suggesting no significant early mortality. By comparing Mini-Mental State Examination (MMSE) scores and diagnoses of dementia, we did not find any significant differences between TYROBP deletion carriers and noncarriers (all p-values >0.5). Neuropathological analysis of 2 deletion carriers (aged 89 and 94 years) demonstrated only minimal beta amyloid pathology (Consortium to Establish a Registry for Alzheimer's Disease (CERAD) score 0). Collectively these results suggest that heterozygous carriership of the TYROBP deletion is not a major risk factor of cognitive impairment. (C) 2017 Elsevier Inc. All rights reserved.Peer reviewe
C9orf72 hexanucleotide repeat allele tagging SNPs : Associations with ALS risk and longevity
Peer reviewe
C9orf72 hexanucleotide repeat length in older population: normal variation and effects on cognition
The hexanucleotide repeat expansion in C9orf72 is a common cause of amyotrophic lateral sclerosis/frontotemporal dementia and also rarely found in other psychiatric and neurodegenerative conditions. Alleles with >30 repeats are often considered an expansion, but the pathogenic repeat length threshold is still unclear. It is also unclear whether intermediate repeat length alleles (often defined either as 7-30 or 20-30 repeats) have clinically significant effects. We determined the C9orf72 repeat length distribution in 3142 older Finns (aged 60-104 years). The longest nonexpanded allele was 45 repeats. We found 7-45 repeats in 1036/3142 (33%) individuals, 20-45 repeats in 56/3142 (1.8%), 30-45 repeats in 12/3142 (0.38%), and expansion (>45 repeats) in 6/3142 (0.19%). There was no apparent clustering of neurodegenerative or psychiatric diseases in individuals with 30-45 repeats indicating that 30-45 repeats are not pathogenic. None of the 6 expansion carriers had a diagnosis of amyotrophic lateral sclerosis/frontotemporal dementia but 4 had a diagnosis of a neurodegenerative or psychiatric disease. Intermediate length alleles (categorized as 7-45 and 20-45 repeats) did not associate with Alzheimer's disease or cognitive impairment. (C) 2019 The Author(s). Published by Elsevier Inc.Peer reviewe
Carriership of two copies of C9orf72 hexanucleotide repeat intermediate-length alleles is a risk factor for ALS in the Finnish population
The hexanucleotide repeat expansion in intron 1 of the C9orf72 gene causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. In addition to the effects of the pathogenic expansion, a role of intermediate-length alleles has been suggested in ALS, corticobasal degeneration and Parkinson's disease. Due to the rarity of intermediate-length alleles with over 20 repeats and the geographical variability in their frequency, large studies that account for population stratification are needed to elucidate their effects. To this aim, we used repeat-primed PCR and confirmatory PCR assays to determine the C9orf72 repeat allele lengths in 705 ALS patients and 3958 controls from Finland. After exclusion of expansion carriers (25.5% of the ALS patients and 0.2% of the controls), we compared the frequency of intermediate-length allele carriers of 525 ALS cases and 3950 controls using several intermediate-length allele thresholds (7-45, 17-45, 21-45, 24-45 and 24-30). The carriership of an intermediate-length allele did not associate with ALS (Fisher's test, all p >= 0.15) nor was there any association with survival (p >= 0.33), when we divided our control group into three age groups (18-65, 66-84 and 85-105 years). Carriership of two intermediate-length alleles was associated with ALS, when the longer allele was >= 17 repeats (p=0.002, OR 5.32 95% CI 2.02-14.05) or >= 21 repeats (p=0.00016, OR 15.21 95% CI 3.79-61.0). Our results show that intermediate-length alleles are a risk factor of ALS when present in both alleles, whereas carrying just one intermediate-length allele was not associated with ALS or survival.Peer reviewe
Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis
Hannu Laaksovirta konsortion jäsenenä.IMPORTANCE Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation. OBJECTIVE To identify the genetic variants associated with juvenile ALS. DESIGN, SETTING, AND PARTICIPANTS In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism. MAIN OUTCOMES AND MEASURES De novo variants present only in the index case and not in unaffected family members. RESULTS Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p. Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway. CONCLUSIONS AND RELEVANCE These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.Peer reviewe