76 research outputs found
Recommended from our members
Molecular characterization of the stomach microbiota in patients with gastric cancer and controls
Persistent infection of the gastric mucosa by Helicobacter pylori, can initiate an inflammatory cascade that progresses into atrophic gastritis, a condition associated with reduced capacity for secretion of gastric acid and an increased risk in developing gastric cancer. The role of H. pylori as an initiator of inflammation is evident but the mechanism for development into gastric cancer has not yet been proven. A reduced capacity for gastric acid secretion allows survival and proliferation of other microbes that normally are killed by the acidic environment. It has been postulated that some of these species may be involved in the development of gastric cancer, however their identities are poorly defined. In this study, the gastric microbiota from ten patients with gastric cancer was characterized and compared with five dyspeptic controls using the molecular profiling approach, terminal-restriction fragment length polymorphism (T-RFLP), in combination with 16S rRNA gene cloning and sequencing. T-RFLP analysis revealed a complex bacterial community in the cancer patients that was not significantly different from the controls. Sequencing of 140 clones revealed 102 phylotypes, with representatives from five bacterial phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria and Fusobacteria). The data revealed a relatively low abundance of H. pylori and showed that the gastric cancer microbiota was instead dominated by different species of the genera Streptococcus, Lactobacillus, Veillonella and Prevotella. The respective role of these species in development of gastric cancer remains to be determined
PathOrganic – Risks and Recommendations Regarding Human Pathogens in Organic Vegetable Production Chains
PathOrganic assesses risks associated with the consumption of fresh and minimally
processed vegetables due to the prevalence of bacterial human pathogens in plant
produce. The project evaluates whether organic production poses a risk on food safety,
taking into consideration sources of pathogen transmission (e.g. animal manure).
The project also explores whether organic versus conventional production practices
may reduce the risk of pathogen manifestation. In Europe, vegetable-linked outbreaks
are not well investigated. A conceptual model together with novel sampling strategies
and specifically adjusted methods provides the basis for large-scale surveys of organically
grown plant produce in five European countries. Critical control points are
determined and evaluated and factors contributing to a food safety problem are analyzed
in greenhouse and field experiments. The project aims at developing a quantitative
risk assessment model and at formulating recommendations for improving food
safety in organic vegetable production
A minimal Beta Beam with high-Q ions to address CP violation in the leptonic sector
In this paper we consider a Beta Beam setup that tries to leverage at most
existing European facilities: i.e. a setup that takes advantage of facilities
at CERN to boost high-Q ions (8Li and 8B) aiming at a far detector located at L
= 732 Km in the Gran Sasso Underground Laboratory. The average neutrino energy
for 8Li and 8B ions boosted at \gamma ~ 100 is in the range E_\nu = [1,2] GeV,
high enough to use a large iron detector of the MINOS type at the far site. We
perform, then, a study of the neutrino and antineutrino fluxes needed to
measure a CP-violating phase delta in a significant part of the parameter
space. In particular, for theta_13 > 3 deg, if an antineutrino flux of 3 10^19
useful 8Li decays per year is achievable, we find that delta can be measured in
60% of the parameter space with 6 10^18 useful 8B decays per year.Comment: 19 pages, 10 figures, added references and corrected typo
Recommended from our members
The Gut Microbiota: Ecology and Function
The gastrointestinal (GI) tract is teeming with an extremely abundant and diverse microbial community. The members of this community have coevolved along with their hosts over millennia. Until recently, the gut ecosystem was viewed as black box with little knowledge of who or what was there or their specific functions. Over the past decade, however, this ecosystem has become one of fastest growing research areas of focus in microbial ecology and human and animal physiology. This increased interest is largely in response to studies tying microbes in the gut to important diseases afflicting modern society, including obesity, allergies, inflammatory bowel diseases, and diabetes. Although the importance of a resident community of microorganisms in health was first hypothesized by Pasteur over a century ago (Sears, 2005), the multiplicity of physiological changes induced by commensal bacteria has only recently been recognized (Hooper et al., 2001). The term 'ecological development' was recently coined to support the idea that development of the GI tract is a product of the genetics of the host and the host's interactions with resident microbes (Hooper, 2004). The search for new therapeutic targets and disease biomarkers has escalated the need to understand the identities and functions of the microorganisms inhabiting the gut. Recent studies have revealed new insights into the membership of the gut microbial community, interactions within that community, as well as mechanisms of interaction with the host. This chapter focuses on the microbial ecology of the gut, with an emphasis on information gleaned from recent molecular studies
Recommended from our members
Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management
Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) co-exist in soil, but their relative distribution may vary depending on the environmental conditions. Effects of changes in soil organic matter and nutrient content on the AOB and AOA are poorly understood. Our aim was to compare effects of long-term soil organic matter depletion and amendments with labile (straw) and more recalcitrant (peat) organic matter, with and without easily plant-available nitrogen, on the activities, abundances and community structures of AOB and AOA. Soil was sampled from a long-term field site in Sweden that was established in 1956. The potential ammonia oxidation rates, the AOB and AOA amoA gene abundances and the community structures of both groups based on T-RFLP of amoA genes were determined. Straw amendment during 50 years had not altered any of the measured soil parameters, while the addition of peat resulted in a significant increase of soil organic carbon as well as a decrease in pH. Nitrogen fertilization alone resulted in a small decrease in soil pH, organic carbon and total nitrogen, but an increase in primary production. Type and amount of organic matter had an impact on the AOB and AOA community structures and the AOA abundance. Our findings confirmed that AOA are abundant in soil, but showed that under certain conditions the AOB dominate, suggesting niche differentiation between the two groups at the field site. The large differences in potential rates between treatments correlated to the AOA community size, indicating that they were functionally more important in the nitrification process than the AOB. The AOA abundance was positively related to addition of labile organic carbon, which supports the idea that AOA could have alternative growth strategies using organic carbon. The AOB community size varied little in contrast to that of the AOA. This indicates that the bacterial ammonia oxidizers as a group have a greater ecophysiological diversity and potentially cover a broader range of habitats
Community structure of actively growing bacterial populations in plant pathogen suppressive soil
The bacterial community in soil was screened by using various molecular approaches for bacterial populations that were activated upon addition of different supplements. Plasmodiophora brassicae spores, chitin, sodium acetate, and cabbage plants were added to activate specific bacterial populations as an aid in screening for novel antagonists to plant pathogens. DNA from growing bacteria was specifically extracted from the soil by bromodeoxyuridine immunocapture. The captured DNA was fingerprinted by terminal restriction fragment length polymorphism (T-RFLP). The composition of the dominant bacterial community was also analyzed directly by T-RFLP and by denaturing gradient gel electrophoresis (DGGE). After chitin addition to the soil, some bacterial populations increased dramatically and became dominant both in the total and in the actively growing community. Some of the emerging bands on DGGE gels from chitin-amended soil were sequenced and found to be similar to known chitin-degrading genera such as Oerskovia, Kitasatospora, and Streptomyces species. Some of these sequences could be matched to specific terminal restriction fragments on the T-RFLP output. After addition of Plasmodiophora spores, an increase in specific Pseudomonads could be observed with Pseudomonas-specific primers for DGGE. These results demonstrate the utility of microbiomics, or a combination of molecular approaches, for investigating the composition of complex microbial communities in soi
The Bacteria and Archaea in Soil.
In macro-ecological communities, the communities of bacteria and archaea in soil are almost invariably composed of a range of diverse types with different ecophysiological characteristics. The bacteria isolated from soil by culturing so far have been shown to collectively possess an immense diverse metabolic capacity. The traditional cultivation-based studies using dilution plating on standard agar media or cultivation/enrichment in liquid media have taught that a wide range of different bacteria, belonging to several different bacterial phyla, inhabit soil. Gene expression mechanisms in Archaea are often more related to those of eukaryotes than to those in the Bacteria. Based on the bacterial numbers and diversities in soil, soil appears to provide considerable hospitable niche space for a range of bacteria and archaea, despite the apparent limitations to their growth. One consequence of the nutrient starvation that bacteria and most likely archaea experience in soils is a reduction in their cell size
- …