68 research outputs found

    The sense and nonsense of direct-to-consumer genetic testing for cardiovascular disease

    Get PDF
    Expectations are high that increasing knowledge of the genetic basis of cardiovascular disease will eventually lead to personalised medicine—to preventive and therapeutic interventions that are targeted to at-risk individuals on the basis of their genetic profiles. Most cardiovascular diseases are caused by a complex interplay of many genetic variants interacting with many non-genetic risk factors such as diet, exercise, smoking and alcohol consumption. Since several years, genetic susceptibility testing for cardiovascular diseases is being offered via the internet directly to consumers. We discuss five reasons why these tests are not useful, namely: (1) the predictive ability is still limited; (2) the risk models used by the companies are based on assumptions that have not been verified; (3) the predicted risks keep changing when new variants are discovered and added to the test; (4) the tests do not consider non-genetic factors in the prediction of cardiovascular disease risk; and (5) the test results will not change recommendations of preventive interventions. Predictive genetic testing for multifactorial forms of cardiovascular disease clearly lacks benefits for the public. Prevention of disease should therefore remain focused on family history and on non-genetic risk factors as diet and physical activity that can have the strongest impact on disease risk, regardless of genetic susceptibility

    A Methodological Perspective on Genetic Risk Prediction Studies in Type 2 Diabetes: Recommendations for Future Research

    Get PDF
    Fueled by the successes of genome-wide association studies, numerous studies have investigated the predictive ability of genetic risk models in type 2 diabetes. In this paper, we review these studies from a methodological perspective, focusing on the variables included in the risk models as well as the study designs and populations investigated. We argue and show that differences in study design and characteristics of the study population have an impact on the observed predictive ability of risk models. This observation emphasizes that genetic risk prediction studies should be conducted in those populations in which the prediction models will ultimately be applied, if proven useful. Of all genetic risk prediction studies to date, only a few were conducted in populations that might be relevant for targeting preventive interventions

    Personal genome testing: Test characteristics to clarify the discourse on ethical, legal and societal issues

    Get PDF
    Background: As genetics technology proceeds, practices of genetic testing have become more heterogeneous: many different types of tests are finding their way to the public in different settings and for a variety of purposes. This diversification is relevant to the discourse on ethical, legal and societal issues (ELSI) surrounding genetic testing, which must evolve to encompass these differences. One important development is the rise of personal genome testing on the basis of genetic profiling: the testing of multiple genetic variants simultaneously for the prediction of common multifactorial diseases. Currently, an increasing number of companies are offering personal genome tests directly to consumers and are spurring ELSI-discussions, which stand in need of clarification. This paper presents a systematic approach to the ELSI-evaluation of personal genome testing for multifactorial diseases along the lines of its test characteristics. Discussion: This paper addresses four test characteristics of personal genome testing: its being a non-targeted type of testing, its high analytical validity, low clinical validity and problematic clinical utility. These characteristics raise their own specific ELSI, for example: non-targeted genetic profiling poses serious problems for information provision and informed consent. Questions about the quantity and quality of the necessary information, as well as about moral responsibilities with regard to the provision of information are therefore becoming central themes within ELSI-discussions of personal genome testing. Further, the current low level of clinical validity of genetic profiles raises questions concerning societal risks and regulatory requirements, whereas simultaneously it causes traditional ELSI-issues of clinical genetics, such as psychological and health risks, discrimination, and stigmatization, to lose part of their relevance. Also, classic notions of clinical utility are challenged by the newer notion of 'personal utility.' Summary: Consideration of test characteristics is essential to any valuable discourse on the ELSI of personal genome testing for multifactorial diseases. Four key characteristics of the test - targeted/non-targeted testing, analytical validity, clinical validity and clinical utility - together determine the applicability and the relevance of ELSI to specific tests. The paper identifies and discusses four areas of interest for the ELSI-debate on personal genome testing: informational problems, risks, regulatory issues, and the notion of personal utility

    Informed decision making about predictive DNA tests: arguments for more public visibility of personal deliberations about the good life

    Get PDF
    Since its advent, predictive DNA testing has been perceived as a technology that may have considerable impact on the quality of people’s life. The decision whether or not to use this technology is up to the individual client. However, to enable well considered decision making both the negative as well as the positive freedom of the individual should be supported. In this paper, we argue that current professional and public discourse on predictive DNA-testing is lacking when it comes to supporting positive freedom, because it is usually framed in terms of risk and risk management. We show how this ‘risk discourse’ steers thinking on the good life in a particular way. We go on to argue that empirical research into the actual deliberation and decision making processes of individuals and families may be used to enrich the environment of personal deliberation in three ways: (1) it points at a richer set of values that deliberators can take into account, (2) it acknowledges the shared nature of genes, and (3) it shows how one might frame decisions in a non-binary way. We argue that the public sharing and discussing of stories about personal deliberations offers valuable input for others who face similar choices: it fosters their positive freedom to shape their view of the good life in relation to DNA-diagnostics. We conclude by offering some suggestions as to how to realize such public sharing of personal stories

    Disease risk prediction with rare and common variants

    Get PDF
    A number of studies have been conducted to investigate the predictive value of common genetic variants for complex diseases. To date, these studies have generally shown that common variants have no appreciable added predictive value over classical risk factors. New sequencing technology has enhanced the ability to identify rare variants that may have larger functional effects than common variants. One would expect rare variants to improve the discrimination power for disease risk by permitting more detailed quantification of genetic risk. Using the Genetic Analysis Workshop 17 simulated data sets for unrelated individuals, we evaluate the predictive value of rare variants by comparing prediction models built using the support vector machine algorithm with or without rare variants. Empirical results suggest that rare variants have appreciable effects on disease risk prediction

    The utility and predictive value of combinations of low penetrance genes for screening and risk prediction of colorectal cancer

    Get PDF
    Despite the fact that colorectal cancer (CRC) is a highly treatable form of cancer if detected early, a very low proportion of the eligible population undergoes screening for this form of cancer. Integrating a genomic screening profile as a component of existing screening programs for CRC could potentially improve the effectiveness of population screening by allowing the assignment of individuals to different types and intensities of screening and also by potentially increasing the uptake of existing screening programs. We evaluated the utility and predictive value of genomic profiling as applied to CRC, and as a potential component of a population-based cancer screening program. We generated simulated data representing a typical North American population including a variety of genetic profiles, with a range of relative risks and prevalences for individual risk genes. We then used these data to estimate parameters characterizing the predictive value of a logistic regression model built on genetic markers for CRC. Meta-analyses of genetic associations with CRC were used in building science to inform the simulation work, and to select genetic variants to include in logistic regression model-building using data from the ARCTIC study in Ontario, which included 1,200 CRC cases and a similar number of cancer-free population-based controls. Our simulations demonstrate that for reasonable assumptions involving modest relative risks for individual genetic variants, that substantial predictive power can be achieved when risk variants are common (e.g., prevalence > 20%) and data for enough risk variants are available (e.g., ~140–160). Pilot work in population data shows modest, but statistically significant predictive utility for a small collection of risk variants, smaller in effect than age and gender alone in predicting an individual’s CRC risk. Further genotyping and many more samples will be required, and indeed the discovery of many more risk loci associated with CRC before the question of the potential utility of germline genomic profiling can be definitively answered

    The role of disease characteristics in the ethical debate on personal genome testing

    Get PDF
    Background: Companies are currently marketing personal genome tests directly-to-consumer that provide genetic susceptibility testing for a range of multifactorial diseases simultaneously. As these tests comprise multiple risk analyses for multiple diseases, they may be difficult to evaluate. Insight into morally relevant differences between diseases will assist researchers, healthcare professionals, policy-makers and other stakeholders in the ethical evaluation of personal genome tests. Discussion. In this paper, we identify and discuss four disease characteristics - severity, actionability, age of onset, and the somatic/psychiatric nature of disease - and show how these lead to specific ethical issues. By way of illustration, we apply this framework to genetic susceptibility testing for three diseases: type 2 diabetes, age-related macular degeneration and clinical depression. For these three diseases, we point out the ethical issues that are relevant to the question whether it is morally justifiable to offer genetic susceptibility testing to adults or to children or minors, and on what conditions. Summary. We conclude that the ethical evaluation of personal genome tests is challenging, for the ethical issues differ with the diseases tested for. An understanding of the ethical significance of disease characteristics will improve the ethical, legal and societal debate on personal genome testing

    Novel genetic analysis for case-control genome-wide association studies: quantification of power and genomic prediction accuracy

    Get PDF
    Genome-wide association studies (GWAS) are routinely conducted for both quantitative and binary (disease) traits. We present two analytical tools for use in the experimental design of GWAS. Firstly, we present power calculations quantifying power in a unified framework for a range of scenarios. In this context we consider the utility of quantitative scores (e.g. endophenotypes) that may be available on cases only or both cases and controls. Secondly, we consider, the accuracy of prediction of genetic risk from genome-wide SNPs and derive an expression for genomic prediction accuracy using a liability threshold model for disease traits in a case-control design. The expected values based on our derived equations for both power and prediction accuracy agree well with observed estimates from simulations

    Accuracy of Predicting the Genetic Risk of Disease Using a Genome-Wide Approach

    Get PDF
    Background - The prediction of the genetic disease risk of an individual is a powerful public health tool. While predicting risk has been successful in diseases which follow simple Mendelian inheritance, it has proven challenging in complex diseases for which a large number of loci contribute to the genetic variance. The large numbers of single nucleotide polymorphisms now available provide new opportunities for predicting genetic risk of complex diseases with high accuracy. Methodology/Principal Findings - We have derived simple deterministic formulae to predict the accuracy of predicted genetic risk from population or case control studies using a genome-wide approach and assuming a dichotomous disease phenotype with an underlying continuous liability. We show that the prediction equations are special cases of the more general problem of predicting the accuracy of estimates of genetic values of a continuous phenotype. Our predictive equations are responsive to all parameters that affect accuracy and they are independent of allele frequency and effect distributions. Deterministic prediction errors when tested by simulation were generally small. The common link among the expressions for accuracy is that they are best summarized as the product of the ratio of number of phenotypic records per number of risk loci and the observed heritability. Conclusions/Significance - This study advances the understanding of the relative power of case control and population studies of disease. The predictions represent an upper bound of accuracy which may be achievable with improved effect estimation methods. The formulae derived will help researchers determine an appropriate sample size to attain a certain accuracy when predicting genetic ris
    corecore