131 research outputs found

    Galactosylsphingamides : new α-GalCer analogues to probe the F’-pocket of CD1d

    Get PDF
    Invariant Natural Killer T-cells (iNKT-cells) are an attractive target for immune response modulation, as upon CD1d-mediated stimulation with KRN7000, a synthetic alpha-galactosylceramide, they produce a vast amount of cytokines. Here we present a synthesis that allows swift modification of the phytosphingosine side chain by amidation of an advanced methyl ester precursor. The resulting KRN7000 derivatives, termed alpha-galactosylsphingamides, were evaluated for their capacity to stimulate iNKT-cells. While introduction of the amide-motif in the phytosphingosine chain is tolerated for CD1d binding and TCR recognition, the studied alpha-galactosylsphingamides showed compromised antigenic properties

    Broadening the message : a nanovaccine co-loaded with messenger RNA and α-GalCer induces antitumor immunity through conventional and natural killer T cells

    Get PDF
    Messenger RNA encoding tumor antigens has the potential to evoke effective antitumor immunity. This study reports on a nanoparticle platform, named mRNA Galsomes, that successfully co-delivers nucleoside-modified antigen-encoding mRNA and the glycolipid antigen and immunopotentiator α-galactosylceramide (α-GC) to antigen-presenting cells after intravenous administration. By co-formulating low doses of α-GC, mRNA Galsomes induce a pluripotent innate and adaptive tumor-specific immune response in mice, with invariant natural killer T cells (iNKT) as a driving force. In comparison, mRNA Galsomes exhibit advantages over the state-of-the-art cancer vaccines using unmodified ovalbumin (OVA)-encoding mRNA, as we observed up to seven times more tumor-infiltrating antigen-specific cytotoxic T cells, combined with a strong iNKT cell and NK cell activation. In addition, the presence of suppressive myeloid cells (myeloid-derived suppressor cells and tumor-associated macrophages) in the tumor microenvironment was significantly lowered. Owing to these antitumor effects, OVA mRNA Galsomes significantly reduced tumor growth in established E.G7-OVA lymphoma, with a complete tumor rejection in 40% of the animals. Moreover, therapeutic vaccination with mRNA Galsomes enhanced the responsiveness to treatment with a PD-L1 checkpoint inhibitor in B16-OVA melanoma, as evidenced by a synergistic reduction of tumor outgrowth and a significantly prolonged median survival. Taken together, these data show that intravenously administered mRNA Galsomes can provide controllable, multifaceted, and effective antitumor immunity, especially when combined with checkpoint inhibition

    Direct measurement of enthalpy and entropy changes in NH3 promoted O2 activation over Cu−CHA at low temperature

    Get PDF
    Oxygen activation is a key step in the selective catalytic reduction of nitrogen oxides with ammonia (NH -SCR) over Cu-chabazite. We present direct measurements of oxygen adsorption at low temperatures over [NH −Cu−NH ] complexes and framework-bound Cu species in Cu-chabazite with Si/Al=14 using isothermal microcalorimetry combined with mass spectrometry. The enthalpy change for O adsorption over [NH −Cu−NH ] complexes at 200 \ub0C is determined to be −79 kJ/mol. By fitting a Langmuir isotherm, the corresponding entropy change is determined to be −142 J/(mol*K) at 10 % O . The results show that O adsorption at low temperatures over [NH −Cu−NH ] complexes is more facile than on framework-bound Cu species. The experimental results are in agreement with density functional theory calculations showing a lower barrier for O activation over the [NH −Cu−NH ] complexes as compared to the framework-bound Cu species

    A molecular switch in mouse CD1d modulates natural killer T cell activation by α-galactosylsphingamides

    Get PDF
    Type I natural killer T (NKT) cells are a population of innate like T lymphocytes that rapidly respond to α-GalCer presented by CD1d via the production of both pro- and anti-inflammatory cytokines. While developing novel α-GalCer analogs that were meant to be utilized as potential adjuvants because of their production of pro-inflammatory cytokines (Th1 skewers), we generated α-galactosylsphingamides (αGSA). Surprisingly, αGSAs are not potent antigens in vivo despite their strong T-cell receptor (TCR)–binding affinities. Here, using surface plasmon resonance (SPR), antigen presentation assays, and X-ray crystallography (yielding crystal structures of 19 different binary (CD1d-glycolipid) or ternary (CD1d-glycolipid-TCR) complexes at resolutions between 1.67 and 2.85 Å), we characterized the biochemical and structural details of αGSA recognition by murine NKT cells. We identified a molecular switch within murine (m)CD1d that modulates NKT cell activation by αGSAs. We found that the molecular switch involves a hydrogen bond interaction between Tyr-73 of mCD1d and the amide group oxygen of αGSAs. We further established that the length of the acyl chain controls the positioning of the amide group with respect to the molecular switch and works synergistically with Tyr-73 to control NKT cell activity. In conclusion, our findings reveal important mechanistic insights into the presentation and recognition of glycolipids with polar moieties in an otherwise apolar milieu. These observations may inform the development αGSAs as specific NKT cell antagonists to modulate immune responses

    Radiosynthesis, in vitro and preliminary biological evaluation of [F-18]2-amino-4-((2-((3-fluorobenzyl)oxy)benzyl)(2-((3-(fluoromethyl)benzyl)oxy)benzyl)amino) butanoic acid, a novel alanine serine cysteine transporter 2 inhibitor-based positron emission tomography tracer

    Get PDF
    The metabolic alterations in tumors make it possible to visualize the latter by means of positron emission tomography, enabling diagnosis and providing metabolic information. The alanine serine cysteine transporter-2 (ASCT-2) is the main transporter of glutamine and is upregulated in several tumors. Therefore, a good positron emission tracer targeting this transport protein would have substantial value. Hence, the aim of this study is to develop a fluorine-18-labeled version of a V-9302 analogue, one of the most potent inhibitors of ASCT-2. The precursor was labeled with fluorine-18 via a nucleophilic substitution of the corresponding benzylic bromide. The cold reference product was subjected to in vitro assays with [H-3]glutamine in a PC-3 and F98 cell line to determine the affinity for both the human and rat ASCT-2. To evaluate the tracer potential dynamic mu PET, images were acquired in a mouse xenograft model for prostate cancer. The tracer could be synthesized with an overall nondecay corrected yield of 3.66 +/- 1.90%. in vitro experiments show inhibitor constantsK(i)of 90 and 125 mu M for the PC-3 and F98 cells, respectively. The experiments in the PC-3 xenograft demonstrate a low uptake in the tumor tissue. We have successfully synthesized the radiotracer [F-18]2-amino-4-((2-((3-fluorobenzyl)oxy)benzyl)(2-((3-(fluoromethyl)benzyl)oxy)benzyl)amino)butanoic acid. in vitro experiments show a good affinity for both the human and rat ASCT-2. However, the tracer suffers from poor in vivo tumor uptake in the PC-3 model. Briefly, we present the first fluorine-18-labeled derivative of compound V-9302, a promising novel ASCT-2 blocker used for inhibition of tumor growt

    Hiking trails shift plant species' realized climatic niches and locally increase species richness

    Get PDF
    Aim The presence and use of trails may change plant species' realized climatic niches via modified abiotic and biotic conditions including propagule transport, allowing competition-pressed alpine species to expand their rear edges towards warmer locations and lowland species to extend their leading edges towards cooler locations. We investigated whether mountain trails indeed act as corridors for colonization and shift species' realized climatic niches, resulting in higher species richness in trailsides. Location Dovrefjell and Abisko area in the Scandes mountains of Norway and Sweden. Methods We surveyed plant community composition and disturbances along 16 hiking trails in summer 2018 (Dovrefjell) and 2019 (Abisko). We linked changes in species' realized climatic niches to their climatic optimum and variation in species richness to climate, trail effects and resident plant community characteristics. Results Plant species richness was on average 24% greater in trailside than in interior vegetation plots. Proximity to trails accounted for 9% and climatic harshness for 55% of variation in species richness explained in our model. Trailsides increased in richness, especially in relatively species-poor sites and close to introduction points (each accounting for 24% of variation in our model of species gains). Shifts in rear edges and optima of realized climatic niches along trails related to species' undisturbed climatic optimum, with alpine species being more likely to move into warmer locations. While some disturbance-associated species shifted their leading edges towards colder locations, contrary to expectations this was not the case for lowland species. Overall, shifts in climatic niches resulted in more species' niches overlapping in trailsides than in the interior vegetation. Main conclusion Trails can locally increase species richness by creating opportunities for colonizing species and weaker competitors. Because of prevailing disturbance, they may even provide opportunities for persistence and downward expansion of alpine species, aiding conservation efforts

    A First-Principles Microkinetic Model for Low-Temperature NH3 Assisted Selective Catalytic Reduction of NO over Cu-CHA

    Get PDF
    A first-principles microkinetic model is developed to investigate low-temperature ammonia assisted selective catalytic reduction (NH3-SCR) of NO over Cu-CHA. The reaction proceeds over NH3-solvated Cu-sites by the formation of H2NNO and HONO, which decompose to N2 and H2O over Br\uf8nsted acid sites. Non-selective N2O formation is considered by H2NNO decomposition over the Cu-sites. The adsorption of NH3 at oxidized Cu-sites is found to inhibit the reaction at low temperatures by hindering NO adsorption. For the reactions, we nd positive reaction orders with respect to NO and O2, whereas the reaction order with respect to NH3, is negative. The reaction orders and the obtained apparent activation energy are in good agreement with experimental data. A degree of rate control analysis shows that NH3-SCR over a pair of Cu(NH3)+2 is mainly controlled by NO adsorption below 200 C, whereas the formation of HONO and H2NNO becomes controlling at higher temperatures. The successful formulation of a first-principles microkinetic model for NH3-SCR rationalizes previous phenomenological models and links the kinetic behaviour with materials properties, which results in unprecedented insights in the function of Cu-CHA catalysts for NH3-SCR

    Efficient divergent synthesis of new immunostimulant 4″-modified α-galactosylceramide analogues

    Get PDF
    A synthesis strategy for the swift generation of 4"-modified alpha-galactosylceramide (alpha-GalCer) analogues is described, establishing a chemical platform to comprehensively investigate the structure activity relationships (SAR) of this understudied glycolipid part. The strategy relies on a late-stage reductive ring-opening of a p-methoxybenzylidene (PMP) acetal to regioselectively liberate the 4"-OH position. The expediency of this methodology is demonstrated by the synthesis of a small yet diverse set of analogues, which were tested for their ability to stimulate invariant natural killer T cells (iNKT) in vitro and in vivo. The introduction of a p-chlorobenzyl ether yielded an analogue with promising immunostimulating properties, paving the way for further SAR studies
    • …
    corecore