14,768 research outputs found
Differential thermal analysis and solution growth of intermetallic compounds
To obtain single crystals by solution growth, an exposed primary
solidification surface in the appropriate, but often unknown, equilibrium alloy
phase diagram is required. Furthermore, an appropriate crucible material is
needed, necessary to hold the molten alloy during growth, without being
attacked by it. Recently, we have used the comparison of realistic simulations
with experimental differential thermal analysis (DTA) curves to address both
these problems. We have found: 1) complex DTA curves can be interpreted to
determine an appropriate heat treatment and starting composition for solution
growth, without having to determine the underlying phase diagrams in detail. 2)
DTA can facilitate identification of appropriate crucible materials. DTA can
thus be used to make the procedure to obtain single crystals of a desired phase
by solution growth more efficient. We will use some of the systems for which we
have recently obtained single-crystalline samples using the combination of DTA
and solution growth as examples. These systems are TbAl, PrNiSi,
and YMnAl.Comment: 17 pages, 8 figure
The granular silo as a continuum plastic flow: the hour-glass vs the clepsydra
The granular silo is one of the many interesting illustrations of the
thixotropic property of granular matter: a rapid flow develops at the outlet,
propagating upwards through a dense shear flow while material at the bottom
corners of the container remains static. For large enough outlets, the
discharge flow is continuous; however, by contrast with the clepsydra for which
the flow velocity depends on the height of fluid left in the container, the
discharge rate of granular silos is constant. Implementing a plastic rheology
in a 2D Navier-Stokes solver (following the mu(I)-rheology or a constant
friction), we simulate the continuum counterpart of the granular silo. Doing
so, we obtain a constant flow rate during the discharge and recover the
Beverloo scaling independently of the initial filling height of the silo. We
show that lowering the value of the coefficient of friction leads to a
transition toward a different behavior, similar to that of a viscous fluid, and
where the filling height becomes active in the discharge process. The pressure
field shows that large enough values of the coefficient of friction (
0.3) allow for a low-pressure cavity to form above the outlet, and can thus
explain the Beverloo scaling. In conclusion, the difference between the
discharge of a hourglass and a clepsydra seems to reside in the existence or
not of a plastic yield stress.Comment: 6 pages, 6 figure
Very Long Baseline Interferometry Measured Proper Motion and Parallax of the -ray Millisecond Pulsar PSR J0218+4232
PSR J02184232 is a millisecond pulsar (MSP) with a flux density 0.9
mJy at 1.4 GHz. It is very bright in the high-energy X-ray and -ray
domains. We conducted an astrometric program using the European VLBI Network
(EVN) at 1.6 GHz to measure its proper motion and parallax. A model-independent
distance would also help constrain its -ray luminosity. We achieved a
detection of signal-to-noise ratio S/N > 37 for the weak pulsar in all five
epochs. Using an extragalactic radio source lying 20 arcmin away from the
pulsar, we estimate the pulsar's proper motion to be
mas yr and mas yr, and a parallax of mas. The very long
baseline interferometry (VLBI) proper motion has significantly improved upon
the estimates from long-term pulsar timing observations. The VLBI parallax
provides the first model-independent distance constraints:
kpc, with a corresponding lower-limit of
kpc. This is the first pulsar trigonometric parallax measurement based
solely on EVN observations. Using the derived distance, we believe that PSR
J02184232 is the most energetic -ray MSP known to date. The
luminosity based on even our 3 lower-limit distance is high enough to
pose challenges to the conventional outer gap and slot gap models.Comment: 5 pages, 2 figures, 2 tables; published in the Astrophysical Journal
Letters on 2014 Feb. 1
Multistage Zeeman deceleration of atomic and molecular oxygen
Multistage Zeeman deceleration is a technique used to reduce the velocity of
neutral molecules with a magnetic dipole moment. Here we present a Zeeman
decelerator that consists of 100 solenoids and 100 magnetic hexapoles, that is
based on a short prototype design presented recently [Phys. Rev. A 95, 043415
(2017)]. The decelerator features a modular design with excellent thermal and
vacuum properties, and is robustly operated at a 10 Hz repetition rate. This
multistage Zeeman decelerator is particularly optimized to produce molecular
beams for applications in crossed beam molecular scattering experiments. We
characterize the decelerator using beams of atomic and molecular oxygen. For
atomic oxygen, the magnetic fields produced by the solenoids are used to tune
the final longitudinal velocity in the 500 - 125 m/s range, while for molecular
oxygen the velocity is tunable in the 350 - 150 m/s range. This corresponds to
a maximum kinetic energy reduction of 95% and 80% for atomic and molecular
oxygen, respectively.Comment: Latest version as accepted by Physical Review
AgroDataCube and AGINFRA+: Operationalising Big Data for Agricultural Informatics
Big Data methods and tools are becoming widely adopted by the ICT industry and create new opportunities for data intensive science in the agro-environmental domain. However, Big Data adoption is still in its infancy for Agricultural Information Systems, and many barriers still exist for wider use of big data analysis ..
Charge Transport Properties of a Metal-free Phthalocyanine Discotic Liquid Crystal
Discotic liquid crystals can self-align to form one-dimensional
semiconducting wires, many tens of microns long. In this letter, we describe
the preparation of semiconducting films where the stacking direction of the
disc-like molecules is perpendicular to the substrate surface. We present
measurements of the charge carrier mobility, applying temperature-dependent
time-of-flight transient photoconductivity, space-charge limited current
measurements, and field-effect mobility measurements. We provide experimental
verification of the highly anisotropic nature of semiconducting films of
discotic liquid crystals, with charge carrier mobilities of up to
2.8x10cm/Vs. These properties make discotics an interesting choice
for applications such as organic photovoltaics.Comment: 5 pages, 5 figure
- …