13,822 research outputs found

    Successful paediatric HIV treatment in rural primary care in Africa

    Get PDF
    <p>Objective: Clinical outcomes of HIV-infected children on antiretroviral treatment (ART) in a decentralised, nurse/counsellor-led programme.</p> <p>Design: Clinical cohort.</p> <p>Setting: KwaZulu-Natal, South Africa.</p> <p>Patients: HIV-infected children aged <= 15 years on ART, June 2004-2008.</p> <p>Main outcome measures: Survival according to baseline characteristics including age, WHO clinical stage, haemoglobin and CD4%, was assessed in Kaplan-Meier analyses. Hazard ratios for mortality were estimated using Cox proportional hazards regression and changes in laboratory parameters and weight-for-age z scores after 6-12 months' treatment were calculated.</p> <p>Results: 477 HIV-infected children began ART at a median age of 74 months (range 4-180), median CD4 count (CD4%) of 433 cells/mm(3) (17%) and median HIV viral load of log 4.2 copies/ml; 105 (22%) were on treatment for tuberculosis and 317 (76.6%) were WHO stage 3/4. There were significant increases after ART initiation in CD4% (17% vs 22%; p<0.001), haemoglobin (9.9 vs 11.7 g/l; p <= 0.001) and albumin (30 vs 36 g/l; p <= 0.001). 32 (6.7%) children died over 732 child-years of follow-up (43.7 deaths/1000 child-years; 95% CI 32.7 to 58.2), 17 (53.1%) within 90 days of treatment initiation; median age of death was 84 (IQR 10-181) months. Children with baseline haemoglobin <= 8 g/l were more likely to die (adjusted HR 4.5; 95% CI 1.6 to 12.3), as were those aged <18 months compared with >60 months (adjusted HR 3.2; 95% CI 1.2 to 9.1).</p> <p>Conclusions Good clinical outcomes in HIV-infected children on ART are possible in a rural, decentralised service. Few young children are on ART, highlighting the urgent need to identify HIV-exposed infants.</p&gt

    Short-time Critical Dynamics of the 3-Dimensional Ising Model

    Full text link
    Comprehensive Monte Carlo simulations of the short-time dynamic behaviour are reported for the three-dimensional Ising model at criticality. Besides the exponent θ\theta of the critical initial increase and the dynamic exponent zz, the static critical exponents ν\nu and β\beta as well as the critical temperature are determined from the power-law scaling behaviour of observables at the beginning of the time evolution. States of very high temperature as well as of zero temperature are used as initial states for the simulations.Comment: 8 pages with 7 figure

    Finite-size scaling of directed percolation above the upper critical dimension

    Full text link
    We consider analytically as well as numerically the finite-size scaling behavior in the stationary state near the non-equilibrium phase transition of directed percolation within the mean field regime, i.e., above the upper critical dimension. Analogous to equilibrium, usual finite-size scaling is valid below the upper critical dimension, whereas it fails above. Performing a momentum analysis of associated path integrals we derive modified finite-size scaling forms of the order parameter and its higher moments. The results are confirmed by numerical simulations of corresponding high-dimensional lattice models.Comment: 4 pages, one figur

    Dynamic SU(2) Lattice Gauge Theory at Finite Temperature

    Full text link
    The dynamic relaxation process for the (2+1)--dimensional SU(2) lattice gauge theory at critical temperature is investigated with Monte Carlo methods. The critical initial increase of the Polyakov loop is observed. The dynamic exponents θ\theta and zz as well as the static critical exponent β/ν\beta/\nu are determined from the power law behaviour of the Polyakov loop, the auto-correlation and the second moment at the early stage of the time evolution. The results are well consistent and universal short-time scaling behaviour of the dynamic system is confirmed. The values of the exponents show that the dynamic SU(2) lattice gauge theory is in the same dynamic universality class as the dynamic Ising model.Comment: 10 pages with 2 figure

    The table mountain 8-mm-wavelength interferometer

    Get PDF
    The system components, performance, and calibration of two element radio interferometer operating at 8.33 mm wavelength are discussed. The interferometer employs a 5.5 m and a 3 m diameter antenna on an east-west baseline of 60 or 120 m, yielding fringe spacings at transit of 28 or 14 in. respectively. The broad intermediate frequency bandpass of 100 to 350 MHz and the system noise temperature of 500 K provide high sensitivity for the measurement of continuum sources. The interferometer has been used for high resolution studies of the planets and the Sun, and it is currently being adapted to study solar flare emissions at high spatial and time resolution

    Finite-size scaling of directed percolation in the steady state

    Full text link
    Recently, considerable progress has been made in understanding finite-size scaling in equilibrium systems. Here, we study finite-size scaling in non-equilibrium systems at the instance of directed percolation (DP), which has become the paradigm of non-equilibrium phase transitions into absorbing states, above, at and below the upper critical dimension. We investigate the finite-size scaling behavior of DP analytically and numerically by considering its steady state generated by a homogeneous constant external source on a d-dimensional hypercube of finite edge length L with periodic boundary conditions near the bulk critical point. In particular, we study the order parameter and its higher moments using renormalized field theory. We derive finite-size scaling forms of the moments in a one-loop calculation. Moreover, we introduce and calculate a ratio of the order parameter moments that plays a similar role in the analysis of finite size scaling in absorbing nonequilibrium processes as the famous Binder cumulant in equilibrium systems and that, in particular, provides a new signature of the DP universality class. To complement our analytical work, we perform Monte Carlo simulations which confirm our analytical results.Comment: 21 pages, 6 figure

    Vacuum properties of nonsymmetric gravity in de Sitter space

    Get PDF
    We consider quantum effects of a massive antisymmetric tensor field on the dynamics of de Sitter space-time. Our starting point is the most general, stable, linearized Lagrangian arising in nonsymmetric gravitational theories (NGTs), where part of the antisymmetric field mass is generated by the cosmological term. We construct a renormalization group (RG) improved effective action by integrating out one loop vacuum fluctuations of the antisymmetric tensor field and show that, in the limit when the RG scale goes to zero, the Hubble parameter -- and thus the effective cosmological constant -- relaxes rapidly to zero. We thus conclude that quantum loop effects in de Sitter space can dramatically change the infrared sector of the on-shell gravity, making the expansion rate insensitive to the original (bare) cosmological constant.Comment: 32 pages, 2 eps figure

    Spontaneous Symmetry Breaking in Directed Percolation with Many Colors: Differentiation of Species in the Gribov Process

    Full text link
    A general field theoretic model of directed percolation with many colors that is equivalent to a population model (Gribov process) with many species near their extinction thresholds is presented. It is shown that the multicritical behavior is always described by the well known exponents of Reggeon field theory. In addition this universal model shows an instability that leads in general to a total asymmetry between each pair of species of a cooperative society.Comment: 4 pages, 2 Postscript figures, uses multicol.sty, submitte

    The three species monomer-monomer model in the reaction-controlled limit

    Full text link
    We study the one dimensional three species monomer-monomer reaction model in the reaction controlled limit using mean-field theory and dynamic Monte Carlo simulations. The phase diagram consists of a reactive steady state bordered by three equivalent adsorbing phases where the surface is saturated with one monomer species. The transitions from the reactive phase are all continuous, while the transitions between adsorbing phases are first-order. Bicritical points occur where the reactive phase simultaneously meets two adsorbing phases. The transitions from the reactive to an adsorbing phase show directed percolation critical behaviour, while the universal behaviour at the bicritical points is in the even branching annihilating random walk class. The results are contrasted and compared to previous results for the adsorption-controlled limit of the same model.Comment: 12 pages using RevTeX, plus 4 postscript figures. Uses psfig.sty. accepted to Journal of Physics
    corecore