197 research outputs found
Transformation of 1,1,1-trichloroethane in an anaerobic packed-bed reactor at various concentrations of 1,1,1-trichloroethane, acetate and sulfate
Biotransformation of 1,1,1-trichloroethane (CH3CCl3) was observed in an anaerobic packed-bed reactor under conditions of both sulfate reduction and methanogenesis. Acetate (1 mM) served as an electron donor. CH3CCl3 was completely converted up to the highest investigated concentration of 10 µM. 1,1-Dichloroethane and chloroethane were found to be the main transformation products. A fraction of the CH3CCl3 was completely dechlorinated via an unknown pathway. The rate of transformation and the transformation products formed depended on the concentrations of CH3CCl3, acetate and sulfate. With an increase in sulfate and CH3CCl3 concentrations and a decrease in acetate concentration, the degree of CH3CCl3 dechlorination decreased. Both packed-bed reactor studies and batch experiments with bromoethanesulfonic acid, an inhibitor of methanogenesis, demonstrated the involvement of methanogens in CH3CCl3 transformation. Batch experiments with molybdate showed that sulfate-reducing bacteria in the packed-bed reactor were also able to transform CH3CCl3. However, packed-bed reactor experiments indicated that sulfate reducers only had a minor contribution to the overall transformation in the packed-bed reactor.
The prodrug activator EtaA from Mycobacterium tuberculosis is a Baeyer-Villiger monooxygenase
EtaA is a newly identified FAD-containing monooxygenase that is responsible for activation of several thioamide prodrugs in Mycobacterium tuberculosis. It was found that purified EtaA displays a remarkably low activity with the antitubercular prodrug ethionamide. Hinted by the presence of a Baeyer-Villiger monooxygenase sequence motif in the EtaA sequence, we have been able to identify a large number of novel EtaA substrates. It was discovered that the enzyme converts a wide range of ketones to the corresponding esters or lactones via a Baeyer-Villiger reaction, indicating that EtaA represents a Baeyer-Villiger monooxygenase. With the exception of aromatic ketones (phenylacetone and benzylacetone), long-chain ketones (e.g. 2-hexanone and 2-dodecanone) also are converted. EtaA is also able to catalyze enantioselective sulfoxidation of methyl-ptolylsulfide. Conversion of all of the identified substrates is relatively slow with typical kcat values of around 0.02 s-1. The best substrate identified so far is phenylacetone (Km = 61 μM, kcat = 0.017 s-1). Redox monitoring of the flavin cofactor during turnover of phenylacetone indicates that a step in the reductive half-reaction is limiting the rate of catalysis. Intriguingly, EtaA activity could be increased by one order of magnitude by adding bovine serum albumin. This reactivity and substrate acceptance-profiling study provides valuable information concerning this newly identified prodrug activator from M. tuberculosis
Predator performance is impaired by the presence of a second prey species
The simultaneous infestation of a plant by several species of herbivores may affect the attractiveness of plants to the natural enemies of one of the herbivores. We studied the effect of coconut fruits infested by the pests Aceria guerreronis and Steneotarsonemus concavuscutum, which are generally found together under the coconut perianth. The predatory mite Neoseiulus baraki produced lower numbers of offspring on fruits infested with S. concavuscutum and on fruits infested with both prey than on fruits with A. guerreronis only. The predators were attracted by odours emanating from coconuts with A. guerreronis, but not by odours from coconuts with S. concavuscutum, even when A. guerreronis were present on the same fruit. Fewer N. baraki were recaptured on fruits with both prey or with S. concavuscutum than on fruits with only A. guerreronis. Furthermore, the quality of A. guerreronis from singly and multiply infested coconuts as food for N. baraki did not differ. Concluding, our results suggest that N. baraki does not perform well when S. concavuscutum is present on the coconuts, and the control of A. guerreronis by N. baraki may be negatively affected by the presence of S. concavuscutum
Comparison of stimulation patterns for FES-cycling using measures of oxygen cost and stimulation cost
<b>Aim</b><p></p>
The energy efficiency of FES-cycling in spinal cord injured subjects is very much lower than that of normal cycling, and efficiency is dependent upon the parameters of muscle stimulation. We investigated measures which can be used to evaluate the effect on cycling performance of changes in stimulation parameters, and which might therefore be used to optimise them. We aimed to determine whether oxygen cost and stimulation cost measurements are sensitive enough to allow discrimination between the efficacy of different activation ranges for stimulation of each muscle group during constant-power cycling. <p></p>
<b>Methods</b><p></p>
We employed a custom FES-cycling ergometer system, with accurate control of cadence and stimulated exercise workrate. Two sets of muscle activation angles (“stimulation patterns”), denoted “P1” and “P2”, were applied repeatedly (eight times each) during constant-power cycling, in a repeated measures design with a single paraplegic subject. Pulmonary oxygen uptake was measured in real time and used to determine the oxygen cost of the exercise. A new measure of stimulation cost of the exercise is proposed, which represents the total rate of stimulation charge applied to the stimulated muscle groups during cycling. A number of energy-efficiency measures were also estimated. <p></p>
<b>Results</b><p></p>
Average oxygen cost and stimulation cost of P1 were found to be significantly lower than those for P2 (paired <i>t</i>-test, <i>p</i> < 0.05): oxygen costs were 0.56 ± 0.03 l min<sup>−1</sup> and 0.61 ± 0.04 l min<sup>−1</sup>(mean ± S.D.), respectively; stimulation costs were 74.91 ± 12.15 mC min<sup>−1</sup> and 100.30 ± 14.78 mC min<sup>−1</sup> (mean ± S.D.), respectively. Correspondingly, all efficiency estimates for P1 were greater than those for P2. <p></p>
<b>Conclusion</b><p></p>
Oxygen cost and stimulation cost measures both allow discrimination between the efficacy of different muscle activation patterns during constant-power FES-cycling. However, stimulation cost is more easily determined in real time, and responds more rapidly and with greatly improved signal-to-noise properties than the ventilatory oxygen uptake measurements required for estimation of oxygen cost. These measures may find utility in the adjustment of stimulation patterns for achievement of optimal cycling performance. <p></p>
- …